Спец. семинар (старый):
Докладчик:
Название:
Аннотация доклада:
Мы рассматриваем аффинную по управлению систему в трехмерном пространстве, допустимые скорости которой лежат на эллипсах. Концы экстремальных траекторий, выпущенных из некоторой точки, образуют ее фронт, который перестраивается с течением времени и может иметь довольно сложные особенности.
Оказывается, что эти особенности упрощаются, если поднять фронт в фазовое пространство и рассмотреть в нем лежандрово (лагранжево) подмногообразие, состоящее из концов решений принципа максимума. А именно, мы доказываем, что для системы общего положения подъем фронта типичной точки через малое время диффеоморфен одному из всего двух возможных многообразий.
Оба эти многообразия являются топологическими сферами с тремя типами особенностей. Одно из них является подъемом хорошо известной субримановой сферы. Другое -- подъемом границы множества достижимости линейной управляемой системы.