Лекция 9. Движение по цилиндрической трубе среды Бингама: задача минимизации, величина предельной нагрузки.

Рассмотрим течение вязкопластической среды по трубе под действием постоянного градиента давлений. В этом случае $\Omega = D \times [-L, L]$, где $D \subset \mathbb{R}^2$ — односвязная область с диаметром, много меньшим, чем L,

$$J(v) = \int_{-L}^{L} \int_{D} \varphi(e_v) dx_1 dx_2 dx_3 - \int_{D} P(-L)v_3(x_1, x_2, -L) dx_1 dx_2 - \int_{D} P(L)v_3(x_1, x_2, L) dx_1 dx_2.$$

Предполагаем, что $v|_{\partial D} = 0$.

В качестве кинематически допустимых полей будем рассматривать множество вектор-функций v, явно не зависящих от x_3 и таких, что divv = 0, $v|_{\partial D} = 0$.

Из физических соображений естественно искать минимизирующее поле скоростей в виде

$$(v_1(x_1, x_2, x_3), v_2(x_1, x_2, x_3), v_3(x_1, x_2, x_3)) = (0, 0, u(x_1, x_2)).$$
(1)

В этом случае тензор скоростей деформации e_{ij} при $1\leqslant i\leqslant j\leqslant 3$ имеет только две ненулевые компоненты:

$$e_{i3}(v) = \frac{1}{2} \frac{\partial u}{\partial x_i}, \ i = 1, 2.$$

Упражнение. Пусть $g: \mathbb{R} \to \mathbb{R}$ — четная выпуклая функция, f(e) = g(|e|), где $e \in \mathbb{R}^n$, |e| — евклидова норма. Доказать, что тогда f выпукла и

$$\partial f(e_0) = \left\{ t \frac{e_0}{|e_0|} : t \in \partial g(|e_0|) \right\}, \quad e_0 \in \mathbb{R}^n \setminus \{0\}, \quad \partial f(0) = \{ s \in \mathbb{R}^n : |s| \leqslant g'_+(0) \}. \tag{2}$$

Предложение 1. Если $\varphi(e_v)$ явно зависит только от

$$\sum_{i,j=1}^{3} e_{ij}(v)^{2} \equiv 2e_{12}(v)^{2} + 2e_{13}(v)^{2} + 2e_{23}(v)^{2} + e_{11}(v)^{2} + e_{22}(v)^{2} + (e_{11}(v) + e_{22}(v))^{2}$$

 $u\ \hat{v}=(0,\,0,\,\hat{u}(x_1,\,x_2))$ — точка минимума ограничения функционала J на подпространство функций вида (1), то \hat{v} является точкой минимума J на всем пространстве кинематически допустимых полей.

Доказательство. По условию, $\varphi(e)=g\left(\sqrt{2\sum\limits_{i,j=1}^{3}e_{ij}(v)^{2}}\right)$ для некоторой четной выпуклой функции g. Положим $\psi(\xi_{1},\,\xi_{2})=g(\sqrt{\xi_{1}^{2}+\xi_{2}^{2}}),\,(\xi_{1},\,\xi_{2})\in\mathbb{R}^{2}.$ Тогда для функций вида (1) выполнено

$$\varphi(e) = g\left(\sqrt{\left(\frac{\partial u}{\partial x_1}\right)^2 + \left(\frac{\partial u}{\partial x_2}\right)^2}\right) = \psi\left(\frac{\partial u}{\partial x_1}, \frac{\partial u}{\partial x_2}\right).$$

Запишем принцип виртуальных мощностей для подпространства функций вида (1), то есть условие минимума функционала

$$\int_{-L}^{L} \int_{D} \psi \left(\frac{\partial u}{\partial x_{1}}, \frac{\partial u}{\partial x_{2}} \right) dx - \int_{D} \left[P(-L) + P(L) \right] u(x_{1}, x_{2}) dx_{1} dx_{2} :$$

найдутся измеримые функции s_1, s_2 такие, что

$$(s_1(x), s_2(x)) \in \partial \psi \left(\frac{\partial u}{\partial x_1}(x), \frac{\partial u}{\partial x_2}(x) \right)$$

И

$$\int_{L}^{L} \int_{D} \left[s_1 \frac{\partial z}{\partial x_1} + s_2 \frac{\partial z}{\partial x_2} \right] dx - \int_{D} \left[P(-L) + P(L) \right] z(x_1, x_2) dx_1 dx_2 = 0$$

для любой допустимой функции z. В силу (2), если $\nabla u(x) \neq 0$, то $(s_1(x), s_2(x)) = t \frac{\xi}{|\xi|}$, где $t \in \partial g(|\nabla u(x)|)$, $\xi = \nabla u(x)$, а если $\nabla u(x) = 0$, то $\sqrt{s_1^2(x) + s_2^2(x)} \leqslant g'_+(0)$.

Построим функцию $s:\mathbb{R}^5\to\mathbb{R}^5$ такую, что $s(x)\in\partial\varphi(e_{\hat{v}}(x))$ и для любой допустимой функции h выполнено

$$\int_{\Omega} s(x)e_h(x) dx - \int_{\Omega} [P(-L) + P(L)] h_3(x_1, x_2) dx_1 dx_2 = 0.$$
 (3)

По теореме о приведении квадратичной формы к нормальному виду, найдутся такие $\tilde{e}_1(v)$, $\tilde{e}_2(v)$, являющиеся линейными комбинациями $e_{11}(v)$ и $e_{22}(v)$, что

$$\sum_{i,j=1}^{3} e_{ij}(v)^{2} = 2e_{12}(v)^{2} + 2e_{13}(v)^{2} + 2e_{23}(v)^{2} + 2\tilde{e}_{1}(v)^{2} + 2\tilde{e}_{2}(v)^{2}.$$

Тогда

$$s \cdot e_h = s_{12}e_{12}(h) + s_{23}e_{23}(h) + s_{13}e_{13}(h) + \tilde{s}_1\tilde{e}_1(h) + \tilde{s}_2\tilde{e}_2(h),$$

где \tilde{s}_1 и \tilde{s}_2 являются линейными комбинациями s_{11} и s_{22} . Обозначим

$$\tilde{e}_v = (e_{13}, e_{23}, e_{12}, \tilde{e}_1, \tilde{e}_2), \quad \tilde{s} = (s_{13}, s_{23}, s_{12}, \tilde{s}_1, \tilde{s}_2), \quad \tilde{\varphi}(\tilde{e}_v) = g(|2\tilde{e}_v|).$$

Положим $s_{13}(x)=2s_1(x),\ s_{23}(x)=2s_2(x),\ s_{12}(x)=\tilde{s}_1(x)=\tilde{s}_2(x)=0.$ Если $e_{\hat{v}}(x)\neq 0$, то $\tilde{s}(x)=2t\frac{e_{\hat{v}}(x)}{|e_{\hat{v}}(x)|}$, где $t\in\partial g(|\nabla u(x)|)=\partial g(|2\tilde{e}_v|)$. Заметим, что если $g_1(\xi)=g(2\xi)$, то $\partial g_1(\xi)=2\partial g(2\xi)$. Отсюда и из (2) получаем, что $\tilde{s}(x)\in\partial \tilde{\varphi}(\tilde{e}_{\hat{v}}(x))$ и $s(x)\in\partial \varphi(e_{\hat{v}}(x))$. Случай $e_{\hat{v}}(x)=0$ рассматривается аналогично.

Пусть h — приращение кинематически допустимых полей. Тогда $s(x)e_h(x)=s_1(x)\frac{\partial h_3}{\partial x_1}(x)+s_2(x)\frac{\partial h_3}{\partial x_2}(x)$ (так как h не зависит от x_3). Значит,

$$\int_{-L}^{L} \int_{D} s(x)e_h(x) dx - \int_{D} [P(-L) + P(L)] h_3(x_1, x_2) dx_1 dx_2 =$$

$$= \int_{-L}^{L} \int_{D} \left[s_1 \frac{\partial h_3}{\partial x_1} + s_2 \frac{\partial h_3}{\partial x_2} \right] dx - \int_{D} \left[P(-L) + P(L) \right] h_3(x_1, x_2) dx_1 dx_2 = 0.$$

Тем самым, для \hat{v} выполнено соотношение (3) и \hat{v} является точкой минимума J. \square

Заметим, что задача минимизации функционала J на подпространстве функций вида (1) эквивалентна задаче минимизации функционала

$$J_0(u) = \int_D \psi\left(\frac{1}{2}\frac{\partial u}{\partial x_1}(x), \frac{1}{2}\frac{\partial u}{\partial x_2}(x)\right) dx - c \int_D u dx,$$

где $c = \frac{P(L) + P(-L)}{2L}$. При этом можно считать, что c > 0.

Рассмотрим модель Бингама:

$$\varphi(e) = \frac{\mu}{2}|2e|^2 + \tau_0|e|, \ \mu > 0, \tau_0 > 0.$$

Получаем следующую минимизационную задачу:

$$J_0(u) := \frac{\mu}{2} \int_D |\nabla u|^2 dx + \tau_0 \int_D |\nabla u| dx - c \int_D u dx \to \min, \quad u \in \mathring{W}_2^1(D). \tag{4}$$

По теореме существования, функционал J_0 имеет точку минимума. В силу сильной выпуклости J_0 , решение задачи (4) единственно и непрерывно зависит от μ и τ_0 .

1 Величина предельной нагрузки

Найдем константу c_* , удовлетворяющую следующему условию: 0 — решение (4) тогда и только тогда, когда $c \in [0, c_*]$.

Теорема 1. Имеет место формула

$$c_* = \tau_0 \inf_{D' \subset D} \frac{|\partial D'|}{|D'|},\tag{5}$$

где inf берется по множеству областей $D' \subset D$, граница которых является конечным объединением спрямляемых кривых; $|\partial D'| - \partial$ лина границы D', |D'| - nлощадь D'.

Доказательство. Шаг 1. Минимум функционала J_0 достигается в нуле тогда и только тогда, когда $0 \in \partial J_0(0)$. По теореме Моро-Рокафеллара, это равносильно тому, что $0 \in \partial J_1(0)$, где

$$J_1(u) = \tau_0 \int_D |\nabla u| \, dx - c \int_D u \, dx.$$

По определению субдифференциала, $0 \in \partial J_1(0)$ тогда и только тогда, когда

$$\tau_0 \int_D |\nabla u| \, dx - c \int_D u \, dx \geqslant 0, \quad u \in \mathring{W}_2^1(D),$$

так что

$$c_* = \tau_0 \inf_{u \in \mathring{W}_2^1(D), u \neq 0} \frac{\int\limits_{D} |\nabla u| \, dx}{\left| \int\limits_{D} u \, dx \right|}.$$

Шаг 2. Заметим, что в силу непрерывности числителя и знаменателя достаточно брать инфинум по всюду плотному множеству.

Скажем, что $u \in \tilde{W}$, если существует открытое множество $\tilde{D} \subset D$ такое, что $\partial \tilde{D} \subset D$ — конечное объединение ломаных, $u|_{D\setminus \tilde{D}}=0$ и существует разбиение \tilde{D} на треугольники Δ_i $(1\leqslant i\leqslant m)$ такое, что для любого $i\in\{1,\ldots,m\}$ функция $u|_{\Delta_i}$ является аффинной и не является константой.

Покажем, что множество \tilde{W} плотно в $\mathring{W}_2^1(D)$. В самом деле, возьмем произвольные $\varepsilon > 0$ и $u \in \mathring{W}_2^1(D)$. Найдем функцию $\tilde{u} \in C_0^\infty(D)$ такую, что $\|u - \tilde{u}\|_{W_2^1(D)} < \varepsilon/2$, и продолжим ее нулем на $\mathbb{R}^2 \backslash D$. Поместим D в квадрат и разобьем его на достаточно малые замкнутые равнобедренные прямоугольные треугольники Δ_j , $1 \leqslant j \leqslant m$, катеты которых параллельны осям координат. Обозначим

$$T = \{i = 1, \ldots, m : \Delta_i \backslash D \neq \varnothing\}.$$

Если длины сторон треугольников достаточно малы, то $\tilde{u}|_{\Delta_i}=0$ для любого $i\in T$. Положим $\tilde{D}=\cup_{i\notin T}\Delta_i$. Пусть $i\notin T,\ \xi_{i,j},\ j=1,\ 2,\ 3,\ -$ вершины треугольника Δ_i . Определим $\hat{u}|_{\Delta_i}$ как аффинную функцию такую, что $\hat{u}(\xi_{i,j})=\tilde{u}(\xi_{i,j}),\ 1\leqslant j\leqslant 3$. Если $i\in T$, то положим $\hat{u}|_{\Delta_i}=0$.

По теореме о среднем, найдутся такие точки η и ζ , принадлежащие одному из катетов треугольника Δ_i , что $\tilde{u}_{x_1}(\eta) = \hat{u}_{x_1}(\eta)$, $\tilde{u}_{x_2}(\zeta) = \hat{u}_{x_2}(\zeta)$. Поэтому при достаточно мелком разбиении в силу равномерной непрерывности \tilde{u} и ее производных получаем, что $\|\hat{u} - \tilde{u}\|_{W_2^1(D)} < \varepsilon/2$. Немного изменив значения \hat{u} в вершинах, можно добиться того, чтобы она не была константой на треугольниках Δ_i при $i \notin T$.

Шаг 3. Заметим, что если $u \in W$, то $|u| \in W$, поэтому достаточно рассматривать неотрицательные функции.

Пусть $u \in W$, $u \geqslant 0$. Тогда

$$\frac{\int\limits_{D} |\nabla u| \, dx}{\int\limits_{D} u \, dx} = \frac{\int\limits_{\tilde{D}} |\nabla u| \, dx}{\int\limits_{\tilde{D}} u \, dx}.$$

Положим $A = \max_{x \in \tilde{D}} u(x)$. При 0 < s < A линии уровня $\{x \in D : u(x) = s\}$ являются конечным объединением ломаных, поэтому определена сумма их длин $l_u(s)$. Докажем равенства

$$\int_{\tilde{D}} |\nabla u| \, dx = \int_{0}^{A} l_u(s) \, ds,\tag{6}$$

$$\int_{\tilde{D}} u \, dx = \int_{0}^{A} S_u(s) \, ds,\tag{7}$$

где $S_u(s)$ — плоская мера множества точек $\{x: u(x) \geqslant s\}$.

В силу аддитивности, (6) достаточно проверить для случая, когда \tilde{D} — треугольник, а функция $u|_{\tilde{D}}$ является аффинной. Снова пользуясь аддитивностью и аппроксимируя треугольник конечным объединением квадратов, получаем, что достаточно рассмотреть случай, когда \tilde{D} является квадратом, одна из сторон которого параллельна линии уровня функции u. Если l — длина его стороны, O_{ξ} — координатная ось, параллельная линии уровня функции u, ось O_{η} перепендикулярна O_{ξ} , $A_{1} = \min_{x \in \tilde{D}} u(x)$, $A_{2} = \min_{x \in \tilde{D}} u(x)$

$$\max_{x \in \tilde{D}} u(x)$$
, to $\frac{\partial u}{\partial \xi} = 0$, $\frac{\partial u}{\partial \eta} = \frac{A_2 - A_1}{l}$, $\int_{\tilde{D}} |\nabla u| dx = (A_2 - A_1)l = \int_0^A l_u(s) ds$.

Равенство (7) следует из теоремы Фубини, поскольку левая и правая части этого соотношения равны объему множества $\{(x, t) : x \in \tilde{D}, \ 0 < t < A\}$.

Тем самым,

$$\inf_{u \in \tilde{W}} \frac{\int\limits_{D} |\nabla u| \, dx}{\left|\int\limits_{D} u \, dx\right|} = \inf_{u \in \tilde{W}} \frac{\int\limits_{0}^{A} l_{u}(s) \, ds}{\int\limits_{0}^{A} S_{u}(s) \, ds} \geqslant \inf_{D' \subset \tilde{D}} \frac{|\partial D'|}{|D'|},$$

где инфинум берется по множеству конечных объединений областей, граница которых является конечным объединением спрямляемых кривых. Если $D' = \bigcup_{i=1}^n D_i'$, где D_i — связные компоненты D', то

$$\frac{|\partial D'|}{|D'|} = \frac{\sum\limits_{i=1}^{n} |\partial D'_i|}{\sum\limits_{i=1}^{n} |D'_i|} \geqslant \min_{1 \leqslant i \leqslant n} \frac{|\partial D'_i|}{|D'_i|}.$$

Поэтому инфинум достаточно брать по множеству областей.

Шаг 4. Докажем, что

$$\inf_{u \in \tilde{W}} \frac{\int\limits_{0}^{A} l_u(s) \, ds}{\int\limits_{0}^{A} S_u(s) \, ds} \leqslant \inf_{D' \subset \tilde{D}} \frac{|\partial D'|}{|D'|}.$$

Из определения длины спрямляемой кривой следует, что достаточно брать инфинум по множеству областей, граница которых является конечным объединением жордановых ломаных. Пусть дана такая область D'. Построим функцию $u \in \tilde{W}$ следующим образом. Пусть $\partial D'$ является конечным объединением отрезков l_i . Рассмотрим отрезки \tilde{l}_i , лежащие в D', параллельные l_i и находящиеся от них на расстоянии ε . Получаем ломаную L_ε , ограничивающую область D_ε . Тогда можно построить функцию $u \in \tilde{W}$ такую, что $u|_{D\setminus D'} = 0$, $u|_{D_\varepsilon} = 1$ и $u|_{\mathcal{I}_i}$ является аффинной, где \mathcal{T}_i — трапеция с параллельными сторонами l_i и \tilde{l}_i . Отсюда

$$\int_{0}^{1} l_u(s) ds = \int_{0}^{1} (|\partial D| + o(1)) dx$$

$$\int_{0}^{1} S_u(s) ds = \int_{0}^{1} (|\partial D| + o(1)) dx$$

$$\int_{0}^{1} (|D| + o(1)) dx$$

$$\int_{0}^{1} |\partial D| = \int_{0}^{1} (|\partial D| + o(1)) dx$$

Замечание. Если область D является p-связной, то инфинум достаточно брать по множеству k-связных областей, где $k \leq p$. Если D выпукла, то инфинум достаточно брать по множеству выпуклых областей.

СПИСОК ЛИТЕРАТУРЫ

- [1] П.П. Мосолов, В.П. Мясников, "Механика жесткопластических сред". М.: Наука, 1981.
- [2] П.П. Мосолов, В.П. Мясников, "Вариационные методы в теории течений жестковязкопластических сред". М.: Изд-во МГУ, 1971.