Теоретические задания к курсу обыкновенный уравнений. Часть III.

Локуциевский Л.В.

28 апреля 2021 г.

- 1. Рассмотрим двумерную линейную систему седла. Пусть Π прямоугольная окрестность начала координат со сторонами, параллельными выделенным решениям. Рассмотрим действие потока P_t на Π . Опишите как устроены образы $P^t\Pi$ и что с ними происходит при $t \to \pm \infty$.
- 2. Сформулируйте определения устойчивости и асимптотической устойчивости некоторого решения x(t) неавтономной системы $\dot{x} = f(t,x)$.
- 3. Постройте пример векторного поля на плоскости \mathbb{R}^2 с единственной неподвижной точкой, которая не является устойчивой, но все решения к ней стремятся при $t \to \infty$.
- 4. Можно ослабить условие теоремы Ляпунова об асимптотической устойчивости, разрешив производной функции Ляпунова вдоль векторного поля быть неотрицательной в окрестности неподвижной точки, но обращаться в 0 не более чем в счетном числе точек?
- 5. Может ли существовать такая функция Ляпунова L, что $dL[f](x_*) < 0$ в некоторой неподвижной точке x_* поля f?
- 6. Вычислите явно в каком-нибудь базисе матрицу оператора B из доказательства теоремы об асимптотической устойчивости по линеаризации.
- 7. Докажите, что свойство асимптотической устойчивости является грубым относительно любых малых в C^1 возмущений, а именно: если x_* неподвижная точка поля f(x), все собственные значения $df(x_*)$ имеют отрицательную действительную часть, а поле $\varphi(x)$ достаточно мало в C^1 метрике, то поле $\tilde{f}(x) = f(x) + \varphi(x)$ имеет единственную близкую к x_* неподвижную точку \tilde{x}_* , и она является асимптотически устойчивой.
- 8. Докажите, что любое определенное при всех $t \in \mathbb{R}$ решение x(t) является либо (i) неподвижной точкой; либо (ii) незамкнутой траекторий ($x(t_1) \neq x(t_2)$ при $t_1 \neq t_2$); либо (iii) периодической траекторией (найдется минимальное $\tau > 0$, что $x(t) = x(t+\tau)$ при всех t).
- 9. В условиях теоремы оструктуре α и ω предельных множеств, верно ли, что ω -предельное множество линейно связно?
- 10. Привести пример такого потока на сфере, что ω -предельные множества любой точки есть северный полюс. Можно ли привести пример такого потока на торе?
- 11. Докажите, что если $T=\{P^t(x), t\in\mathbb{R}\}$ ограниченная траектория, то $\operatorname{cl} T=T\cup\alpha(x)\cup\omega(x)$.

- 12. Найдите производные отображения последования Паункаре Φ и времени движения τ в терминах решений уравнения в вариациях.
- 13. Какова будет гладкость отображений $\tau:S_0\to\mathbb{R}$ и $\Phi:S_0\to S_1$, если f,S_0 и S_1 являются C^k -гладкими.
- 14. Остается ли верной теорема Пуанкаре-Бендиксона, если M проективная плоскость, цилиндр, тор или лист Мебиуса?
- 15. Верно ли, что в условиях теоремы Пуанкаре-Бендиксона $\omega(x)$ является либо неподвижной точкой, либо циклом?
- 16. Пусть $w \in \mathbb{C}^1$ и $f(z,w) = \sum_{k,m=0}^{\infty} a_{km} z^k w^m$. Найдите рекуррентную формулу для коэффициентов разложения в ряд Тейлора решения уравнения w'(z) = f(z,w(z)) с начальным условием w(0) = 0.
- 17. Дано линейное уравнение w' = A(z)w, а отображение A аналитично в проколотой окрестности 0. Докажите, для что обход вокруг 0 по замкнутой кривой определяется линейное отображение $B: \mathbb{C}^n \to \mathbb{C}^n$, которое ставит в соответствие значению решения w(z) в точке z_0 его новое значение в z_0 после обхода. Как это отображение зависит от пути и точки z_0 ?
- 18. Пусть $z_1 \in \mathbb{C}$ из проколотой окрестности 0. Голоморфные решения уравнения Эйлера образуют двумерное пространство S в открытой $|z_1|$ -окрестности z_1 . Проведем через z_1 замкнутую кривую, обхватывающую 0. Продолжив каждое решение вдоль этой кривой мы получим новое решение в окрестности z_1 . Построенное отображение называется *монодромией*. Докажите, что монодромия не зависит от выбора кривой и является линейным отображением $S \to S$.
- 19. Докажите, что дискриминантная кривая является огибающей для семейства проекций геометрических решений.
- 20. Докажите, что не существует такого двумерного многообразия $N \subset \mathbb{R}^2$, что $T_{\theta}N = \ker \alpha(\theta)$.
- 21. Преобразованием Лежандра (гладкой, строго) выпуклой функции f(p) называется функция $f^*(x) = \sup_p (px f(p))$. Решите уравнение Клеро f(y') = xy' y и покажите как связаны решения этого уравнения и f^* .
- 22. Нарисуйте фазовый портрет для решений уравнения $y'^2 + x^2 = 4y$. Теряется ли существование или единственность в особых точках дискриминантной кривой?
- 23. Доказать, что максимальная размерность изотропного многообразия равна $n = \dim M$.
- 24. Векторное поле v на $J^1(M)$ называется контактным, если оно сохраняет контактные гиперплоскости. Контактным гамильтонианом называется функция $F:J^1(M)\to\mathbb{R}$, равная значению 1-формы Пуанкаре-Картана на этом поле, $F=\alpha[v]$. Решите обратную задачу: дана функция $F:J^1(M)\to\mathbb{R}$, требуется доказать, что существует и единственное векторное поле v на $J^1(M)$, контакный гамильтониан которого совпадает с F (подсказка: воспользуйтесь магической формулой Картана). Каким образом это векторное поле связано с характеристическим полем уравнения F(x,u',u)=0?