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Part I

I. Reminder on singular curves
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The Setting

M is a smooth connected manifold of dimension n.

∆ is a totally nonholonomic distribution of rank
m ≤ n on M , also called bracket-generating of rank m.

We call horizontal path any γ ∈ W 1,2([0, 1];M) such
that

γ̇(t) ∈ ∆(γ(t)) a.e. t ∈ [0, 1].

By the Chow-Rashevsky Theorem, M is horizontally
connected, that is, every pair of points can be joined by
an horizontal path.
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Singular horizontal paths

Consider a family X 1, . . . ,X k of smooth vector fields on M
such that

∆(z) = Span
{
X 1(z), . . . ,Xm(z)

}
∀z ∈ M

and given x ∈ M , define the End-Point mapping

E x ,1 : U ⊂ L2([0, 1];Rk) −→ M
u 7−→ γu(1)

where γu : [0, 1]→ M is solution to the Cauchy problem{
γ̇(t) =

∑k
i=1 ui(t)X i (γ(t)) for a.e. t ∈ [0, 1]

γ(0) = x .

Definition

An horizontal path is called singular if it is, through the
”correspondence” γ ↔ u, a critical point of E x ,1.
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Examples of singular horizontal paths

Example 1: Riemannian case
Let ∆(x) = TxM , any path in W 1,2 is horizontal. There are
no singular curves.

Example 2: Heisenberg, fat distributions
In R3, ∆ given by X 1 = ∂x ,X

2 = ∂y + x∂z does not admin
nontrivial singular horizontal paths. The same result is true for
any contact or more generally fat distribution.

Example 3: Martinet distribution
In R3, let ∆ = Vect{X 1,X 2} with X 1,X 2 given by

X 1 = ∂x1 and X 2 = ∂x2 + x2
1∂x3 .

The singular horizontal paths are pieces of orbit of the line
field given by the trace of ∆ over the plane {x1 = 0}.
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Characterization of singular curves

The annihilator of ∆ in T ∗M is defined by

∆⊥ :=
{

(x , p) ∈ T ∗M | p ⊥ ∆(x), p 6= 0
}
⊂ T ∗M

and its Hamiltonian distribution is given by

~∆(x , p) := Span
{
~h1(x , p), . . . , ~hm(x , p)

}
∀(x , p) ∈ T ∗M ,

where ~hi is the Hamiltonian vector field of hi(x , p) = p ·X i(x)
on T ∗M w.r.t. the canonical symplectic form ω.

Proposition

An horizontal path γ : [0, 1]→ M is singular if and only if it is
the projection of a path ψ : [0, 1]→ ∆⊥ which is horizontal

w.r.t. ~∆ or equivalently such that ψ̇(t) ∈ ker
(
ω|∆⊥

)
ψ(t)

for

a.e. t ∈ [0, 1].
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Part II

II. Characterization of abnormal lifts
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Characterization of abnormal lifts I

From now on, we assume that M and ∆ are real-analytic
and we set

ω⊥ = ω|∆⊥ .

In this setting, we proved in a work in collaboration with A.
Belotto and A. Parusinski that:

There exist

an open and dense set S0 ⊂ ∆⊥ whose complement is an
analytic set,

a subanalytic Whitney stratification S = (Sα) which is
invariant by dilation and with S0 as a stratum,

a subanalytic distribution ~K compatible with S and
invariant by dilation,

such that the following properties are satisfied:
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Characterization of abnormal lifts II

(i) There holds

~K(a) = ker
(
ω⊥a
)

∀a ∈ S0,

~K|S0
has constant rank k0 with k0 ≡ m(2) and

k0 ≤ m − 2 and ~K|Sα is isotropic and integrable.

(ii) For each stratum Sα, we have

~K(a) = ker
(
ω⊥a
)
∩ TaSα ∀a ∈ Sα

and ~K|Sα is isotropic with constant rank kα verifying
kα ≤ m − 1 and kα ≥ k0 + 2.

(iii) A path γ : [0, 1]→ M is singular horizontal if and only if
it admits a lift ψ : [0, 1]→ ∆⊥ which is horizontal w.r.t.
~K.
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Examples

Example 1: Rank 2 distributions in dimension 3
∆⊥ has dimension 4 with fibers of dimension 1 so it can be
seen as a graph over M , k0 = 0 and the complement of S0 is
the lift of the so-called Martinet surface

Σ∆ := {x ∈ M | [∆,∆](x) ∈ ∆(x)} .

Singular horizontal paths are given by orbits of the trace of ∆
over Σ∆.

Example 2: Corank 1 distributions
∆⊥ has dimension 2n − (n − 1) = n + 1 with fibers of
dimension 1 so it can be seen as a graph over M and
everything can be projected down to M .
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Examples

Example 3: Rank 2 distributions in dimension n
∆⊥ has dimension 2n − 2, k0 = 0 and for every α 6= 0, we
have kα ∈ {0, 1}.

Example 4: Rank 3 distributions in dimension 4
∆⊥ has dimension 5 and k0 = 1 so ~K|S0

is a line field.

Example 5: Rank 4 distributions in dimension 5
∆⊥ has dimension 6 and k0 = 0 or k0 = 2.
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Part III

III. Minimal rank Sard Conjecture
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The Sard Conjecture

Given x ∈ M , we denote by Singx
∆ the set of points y ∈ M for

which there is a singular horizontal path joining x to y , it is a
closed subset of M containing x .

Conjecture (Sard Conjecture)

The set Singx∆ has Lebesgue measure zero in M.

The result is known in very few cases:

Rank 2 in dimension 3 (much stronger result by Belotto,
Figalli, Parusinski, R).

Cases where the stratification (Sα) consists in only one
stratum.

Some cases of Carnot groups.
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Rank of an horizontal path

The rank of an horizontal path γ is defined by

rank∆(γ) := dim
(
Im
(
DuE

x ,1
))
,

where u is a control such that γ = γu.

In fact, given an horizontal path γ and p ∈ T ∗yMy \ {0} with
y := γ(1), the two following properties are equivalent:

(i) p ∈
(
Im
(
DuE

x ,1
))⊥

.

(ii) There is ψ : [0, 1]→ ∆⊥ which is horizontal w.r.t. ~∆
such that π(ψ) = γ and ψ(1) = (y , p).

There always holds

m ≤ rank∆(γ) ≤ n.

Given x ∈ M and an integer r ∈ [m, n − 1], we denote by
Singx ,r

∆ the set of points y ∈ M for which there is a singular
horizontal path of rank r joining x to y .
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Minimal Rank Sard Conjecture

Conjecture (Sard Conjecture)

For every x ∈ M and every integer r ∈ [m, n − 1], the set
Singx ,r∆ has Lebesgue measure zero in M.

Conjecture (Minimal Rank Sard Conjecture)

For every x ∈ M, the set Singx ,m∆ has Lebesgue measure zero
in M.

Remark

In the case of corank 1 distributions the two above conjectures
are equivalent.

Example

The Minimal Rank Sard Conjecture is satisfied in Carnot
groups.
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Part IV

IV. A Partial result
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MRS Conjecture in the splittable case

Theorem (Belotto-Parusinski-R, 2022)

Assume that both M and ∆ are real-analytic. If the integrable
distribution ~KS0 is splittable, then the Minimal Rank Sard
Conjecture holds true.

Corollary (Belotto-Parusinski-R, 2022)

Assume that both M and ∆ are real-analytic. If ∆ has rank 3
then the Minimal Rank Sard Conjecture holds true.

Corollary (Belotto-Parusinski-R, 2022)

Assume that both M and ∆ are real-analytic. If ∆ has corank
1 (m = n − 1) and ~KS0 is splittable then the Sard Conjecture
holds true.
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Splittable foliations I

Setting:
N is a real-analytic manifold of dimension n ≥ 2 equipped
with a smooth Riemannian metric h.
F is a regular analytic foliation of constant rank
d ∈ [1, n − 1].

Definition

Given ` > 0, we say that x and y in N are (F , `)-related if
there exists a smooth path ϕ : [0, 1]→ N with length ∈ [0, `]
(w.r.t. h) which is horizontal w.r.t. F and joins x to y .

Definition

Given x̄ ∈ N , we call local transverse section at x̄ any set
S ⊂ N containing x̄ which is a smooth submanifold
diffeomorphic to the open disc of dimension n − d and
transverse to the leaves of F .
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Splittable foliations II

Definition

We say that the foliation F is splittable in (N , h) if for every
x̄ ∈ N , every local transverse section S at x̄ and every ` > 0,
the following property is satisfied:
For every Lebesgue measurable set E ⊂ S with Ln−d(E ) > 0,
there is a Lebesgue measurable set F ⊂ E such that:

Ln−d(F ) > 0,

for any x 6= y in F , x and y are not (F , `)-related.
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Examples

Every foliation of rank 1 is splittable.

If F has rank ≥ 2 and the Ricci curvature (w.r.t. h) of all
its leaves is uniformly bounded from below then it is
splittable.

By modifying a construction due to Hirsch, we can
roughly speaking construct a smooth pair (N , h) together
with a rank 2 foliation which is not splittable.
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Sketch of proof
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Thank you for your attention !!
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