On the minimal rank Sard Conjecture in sub-Riemannian geometry

Ludovic Rifford

Université Côte d'Azur

Moscow Seminar on Geometric Control Zoom, 26 October 2023

Ludovic Rifford Minimal rank Sard Conjecture in sub-Riemannian geometry

Outline

- I. Reminder on singular curves
- II. Characterization of abnormal lifts
- III. Minimal rank Sard Conjecture
- IV. A Partial result

I. Reminder on singular curves

The Setting

- *M* is a smooth connected manifold of dimension *n*.
- ∆ is a totally nonholonomic distribution of rank
 m ≤ n on M, also called bracket-generating of rank m.
- We call horizontal path any γ ∈ W^{1,2}([0, 1]; M) such that

$$\dot{\gamma}(t)\in\Delta(\gamma(t))$$
 a.e. $t\in[0,1].$

• By the Chow-Rashevsky Theorem, *M* is **horizontally connected**, that is, every pair of points can be joined by an horizontal path.

Singular horizontal paths

Consider a family X^1, \ldots, X^k of smooth vector fields on M such that

$$\Delta(z) = \operatorname{\mathsf{Span}}\left\{X^1(z), \dots, X^m(z)
ight\} \qquad orall z \in M$$

and given $x \in M$, define the **End-Point mapping**

$$\begin{array}{cccc} E^{\times,1} : \mathcal{U} \subset L^2([0,1];\mathbb{R}^k) & \longrightarrow & M \\ & u & \longmapsto & \gamma_u(1 \end{array}$$

where $\gamma_u : [0,1] \to M$ is solution to the Cauchy problem $\begin{cases} \dot{\gamma}(t) = \sum_{i=1}^k u_i(t) X^i(\gamma(t)) & \text{for a.e. } t \in [0,1] \\ \gamma(0) = x. \end{cases}$

Definition

An horizontal path is called **singular** if it is, through the "correspondence" $\gamma \leftrightarrow u$, a critical point of $E^{x,1}$.

Examples of singular horizontal paths

Example 1: Riemannian case Let $\Delta(x) = T_x M$, any path in $W^{1,2}$ is horizontal. There are no singular curves.

Example 2: Heisenberg, fat distributions In \mathbb{R}^3 , Δ given by $X^1 = \partial_x, X^2 = \partial_y + x\partial_z$ does not admin nontrivial singular horizontal paths. The same result is true for any contact or more generally fat distribution.

Example 3: Martinet distribution In \mathbb{R}^3 , let $\Delta = \text{Vect}\{X^1, X^2\}$ with X^1, X^2 given by

$$X^1=\partial_{x_1}$$
 and $X^2=\partial_{x_2}+x_1^2\partial_{x_3}.$

The singular horizontal paths are pieces of orbit of the line field given by the trace of Δ over the plane $\{x_1 = 0\}$.

Characterization of singular curves

The **annihilator** of Δ in T^*M is defined by

 $\Delta^{\perp} := \left\{ (x,p) \in T^*M \,|\, p \perp \Delta(x), \, p \neq 0
ight\} \subset T^*M$

and its Hamiltonian distribution is given by

 $ec{\Delta}(x,p) := \operatorname{Span}\left\{ec{h}^1(x,p),\ldots,ec{h}^m(x,p)
ight\} \quad \forall (x,p) \in T^*M,$

where \vec{h}^i is the Hamiltonian vector field of $h^i(x, p) = p \cdot X^i(x)$ on T^*M w.r.t. the canonical symplectic form ω .

Proposition

An horizontal path $\gamma : [0,1] \to M$ is singular if and only if it is the projection of a path $\psi : [0,1] \to \Delta^{\perp}$ which is horizontal w.r.t. $\vec{\Delta}$ or equivalently such that $\dot{\psi}(t) \in \ker (\omega_{|\Delta^{\perp}})_{\psi(t)}$ for a.e. $t \in [0,1]$.

II. Characterization of abnormal lifts

Characterization of abnormal lifts I

From now on, we assume that M and Δ are real-analytic and we set

$$\omega^{\perp} = \omega_{|\Delta^{\perp}}.$$

In this setting, we proved in a work in collaboration with A. Belotto and A. Parusinski that:

There exist

- an open and dense set $\mathcal{S}_0 \subset \Delta^\perp$ whose complement is an analytic set,
- a subanalytic Whitney stratification $S = (S_{\alpha})$ which is invariant by dilation and with S_0 as a stratum,
- a subanalytic distribution $\vec{\mathcal{K}}$ compatible with $\mathcal S$ and invariant by dilation,

such that the following properties are satisfied:

Characterization of abnormal lifts II

(i) There holds

$$ec{\mathcal{K}}(\mathfrak{a}) = \ker \left(\omega_{\mathfrak{a}}^{\perp}
ight) \qquad orall \mathfrak{a} \in \mathcal{S}_{0},$$

 $\vec{\mathcal{K}}_{|S_0}$ has constant rank k_0 with $k_0 \equiv m(2)$ and $k_0 \leq m - 2$ and $\vec{\mathcal{K}}_{|S_\alpha}$ is isotropic and integrable. (ii) For each stratum S_α , we have

$$ec{\mathcal{K}}(\mathfrak{a}) = {\sf ker}\left(\omega_\mathfrak{a}^\perp
ight) \cap {\mathcal{T}}_\mathfrak{a} \mathcal{S}_lpha \qquad orall \mathfrak{a} \in \mathcal{S}_lpha$$

and $\vec{\mathcal{K}}_{|S_{\alpha}}$ is isotropic with constant rank k_{α} verifying $k_{\alpha} \leq m-1$ and $k_{\alpha} \geq k_0+2$.

(iii) A path $\gamma : [0, 1] \to M$ is singular horizontal if and only if it admits a lift $\psi : [0, 1] \to \Delta^{\perp}$ which is horizontal w.r.t. $\vec{\mathcal{K}}$.

Examples

Example 1: Rank 2 distributions in dimension 3 Δ^{\perp} has dimension 4 with fibers of dimension 1 so it can be seen as a graph over M, $k_0 = 0$ and the complement of S_0 is the lift of the so-called Martinet surface

$$\Sigma_\Delta := \{x \in M \,|\, [\Delta, \Delta](x) \in \Delta(x)\}.$$

Singular horizontal paths are given by orbits of the trace of Δ over $\Sigma_{\Delta}.$

Example 2: Corank 1 distributions Δ^{\perp} has dimension 2n - (n - 1) = n + 1 with fibers of dimension 1 so it can be seen as a graph over M and everything can be projected down to M.

Example 3: Rank 2 distributions in dimension n Δ^{\perp} has dimension 2n - 2, $k_0 = 0$ and for every $\alpha \neq 0$, we have $k_{\alpha} \in \{0, 1\}$.

Example 4: Rank 3 distributions in dimension 4 Δ^{\perp} has dimension 5 and $k_0 = 1$ so $\vec{\mathcal{K}}_{|S_0|}$ is a line field.

Example 5: Rank 4 distributions in dimension 5 Δ^{\perp} has dimension 6 and $k_0 = 0$ or $k_0 = 2$.

III. Minimal rank Sard Conjecture

The Sard Conjecture

Given $x \in M$, we denote by $\operatorname{Sing}_{\Delta}^{x}$ the set of points $y \in M$ for which there is a singular horizontal path joining x to y, it is a closed subset of M containing x.

Conjecture (Sard Conjecture)

The set $Sing^{\times}_{\Delta}$ has Lebesgue measure zero in M.

The result is known in very few cases:

- Rank 2 in dimension 3 (much stronger result by Belotto, Figalli, Parusinski, R).
- Cases where the stratification (S_α) consists in only one stratum.
- Some cases of Carnot groups.

Rank of an horizontal path

The rank of an horizontal path $\boldsymbol{\gamma}$ is defined by

 $\operatorname{rank}_{\Delta}(\gamma) := \dim \left(\operatorname{Im}(D_u E^{\times,1}) \right),$

where u is a control such that $\gamma = \gamma_u$.

In fact, given an horizontal path γ and p ∈ T^{*}_yM_y \ {0} with y := γ(1), the two following properties are equivalent:
(i) p ∈ (Im(D_uE^{x,1}))[⊥].
(ii) There is ψ : [0, 1] → Δ[⊥] which is horizontal w.r.t. Δ such that π(ψ) = γ and ψ(1) = (y, p).

There always holds

 $m \leq \operatorname{rank}_{\Delta}(\gamma) \leq n.$

Given $x \in M$ and an integer $r \in [m, n-1]$, we denote by $\operatorname{Sing}_{\Delta}^{x,r}$ the set of points $y \in M$ for which there is a singular horizontal path of rank r joining x to y.

Minimal Rank Sard Conjecture

Conjecture (Sard Conjecture)

For every $x \in M$ and every integer $r \in [m, n-1]$, the set $Sing_{\Delta}^{x,r}$ has Lebesgue measure zero in M.

Conjecture (Minimal Rank Sard Conjecture)

For every $x \in M$, the set $Sing_{\Delta}^{x,m}$ has Lebesgue measure zero in M.

Remark

In the case of corank 1 distributions the two above conjectures are equivalent.

Example

The Minimal Rank Sard Conjecture is satisfied in Carnot groups.

IV. A Partial result

Theorem (Belotto-Parusinski-R, 2022)

Assume that both M and Δ are real-analytic. If the integrable distribution $\vec{\mathcal{K}}_{S_0}$ is **splittable**, then the Minimal Rank Sard Conjecture holds true.

Corollary (Belotto-Parusinski-R, 2022)

Assume that both M and Δ are real-analytic. If Δ has rank 3 then the Minimal Rank Sard Conjecture holds true.

Corollary (Belotto-Parusinski-R, 2022)

Assume that both M and Δ are real-analytic. If Δ has corank 1 (m = n - 1) and $\vec{\mathcal{K}}_{S_0}$ is **splittable** then the Sard Conjecture holds true.

Splittable foliations I

Setting:

- *N* is a real-analytic manifold of dimension $n \ge 2$ equipped with a smooth Riemannian metric *h*.
- *F* is a regular analytic foliation of constant rank
 d ∈ [1, *n* − 1].

Definition

Given $\ell > 0$, we say that x and y in N are (\mathcal{F}, ℓ) -related if there exists a smooth path $\varphi : [0, 1] \to N$ with length $\in [0, \ell]$ (w.r.t. h) which is horizontal w.r.t. \mathcal{F} and joins x to y.

Definition

Given $\bar{x} \in N$, we call **local transverse section at** \bar{x} any set $S \subset N$ containing \bar{x} which is a smooth submanifold diffeomorphic to the open disc of dimension n - d and transverse to the leaves of \mathcal{F} .

Definition

We say that the foliation \mathcal{F} is **splittable** in (N, h) if for every $\bar{x} \in N$, every local transverse section S at \bar{x} and every $\ell > 0$, the following property is satisfied: For every Lebesgue measurable set $E \subset S$ with $\mathcal{L}^{n-d}(E) > 0$, there is a Lebesgue measurable set $F \subset E$ such that:

•
$$\mathcal{L}^{n-d}(F) > 0$$
,

• for any $x \neq y$ in F, x and y are not (\mathcal{F}, ℓ) -related.

Examples

- Every foliation of rank 1 is splittable.
- If *F* has rank ≥ 2 and the Ricci curvature (w.r.t. h) of all its leaves is uniformly bounded from below then it is splittable.
- By modifying a construction due to Hirsch, we can roughly speaking construct a smooth pair (*N*, *h*) together with a rank 2 foliation which is not splittable.

Sketch of proof

Thank you for your attention !!