Higher order Goh conditions

Roberto Monti (Padova)

joint work with
F. Boarotto (Agrachev's student) and A. Socionovo (PhD student, Padova)

Seminar in Geometric Control Theory
Moscow, 16th February 2022

Brief history

Italian school in Calculus of Variations (minimality, regularity, etc.)

Brief history

Italian school in Calculus of Variations (minimality, regularity, etc.)
Russian and Soviet school in Control Theory

Brief history

Italian school in Calculus of Variations (minimality, regularity, etc.)
Russian and Soviet school in Control Theory
Pontryagin \rightarrow Gamkrelidze \rightarrow Agrachev (Moscow and Trieste, Italy)

Brief history

Italian school in Calculus of Variations (minimality, regularity, etc.)
Russian and Soviet school in Control Theory
Pontryagin \rightarrow Gamkrelidze \rightarrow Agrachev (Moscow and Trieste, Italy)

Today's results origin from a meeting of these two traditions.

Example, part 1

In the manifold $M=\mathbb{R}^{3}$ consider the two vector fields

$$
f_{1}=\frac{\partial}{\partial x}, \quad f_{2}=(1-x) \frac{\partial}{\partial y}+x^{n} \frac{\partial}{\partial z}
$$

where $n \in \mathbb{N}$ is a parameter.

Example, part 1

In the manifold $M=\mathbb{R}^{3}$ consider the two vector fields

$$
f_{1}=\frac{\partial}{\partial x}, \quad f_{2}=(1-x) \frac{\partial}{\partial y}+x^{n} \frac{\partial}{\partial z},
$$

where $n \in \mathbb{N}$ is a parameter. Consider the distribution of planes

$$
\Delta=\operatorname{span}\left\{f_{1}, f_{2}\right\} \subset T M
$$

and let g be the metric on Δ making f_{1}, f_{2} orthonormal.

Example, part 1

In the manifold $M=\mathbb{R}^{3}$ consider the two vector fields

$$
f_{1}=\frac{\partial}{\partial x}, \quad f_{2}=(1-x) \frac{\partial}{\partial y}+x^{n} \frac{\partial}{\partial z}
$$

where $n \in \mathbb{N}$ is a parameter. Consider the distribution of planes

$$
\Delta=\operatorname{span}\left\{f_{1}, f_{2}\right\} \subset T M
$$

and let g be the metric on Δ making f_{1}, f_{2} orthonormal.
$(M, \Delta, g)=$ sub-Riemannian manifold

Example, part 1

In the manifold $M=\mathbb{R}^{3}$ consider the two vector fields

$$
f_{1}=\frac{\partial}{\partial x}, \quad f_{2}=(1-x) \frac{\partial}{\partial y}+x^{n} \frac{\partial}{\partial z}
$$

where $n \in \mathbb{N}$ is a parameter. Consider the distribution of planes

$$
\Delta=\operatorname{span}\left\{f_{1}, f_{2}\right\} \subset T M
$$

and let g be the metric on Δ making f_{1}, f_{2} orthonormal.
$(M, \Delta, g)=$ sub-Riemannian manifold and $\gamma \in A C([0,1] ; M)$ is admissible if

$$
\dot{\gamma}=u_{1} f_{1}(\gamma)+u_{2} f_{2}(\gamma), \quad u=\left(u_{1}, u_{2}\right) \in L^{2}\left([0,1] ; \mathbb{R}^{2}\right) \quad \text { "control". }
$$

Example, part 1

In the manifold $M=\mathbb{R}^{3}$ consider the two vector fields

$$
f_{1}=\frac{\partial}{\partial x}, \quad f_{2}=(1-x) \frac{\partial}{\partial y}+x^{n} \frac{\partial}{\partial z}
$$

where $n \in \mathbb{N}$ is a parameter. Consider the distribution of planes

$$
\Delta=\operatorname{span}\left\{f_{1}, f_{2}\right\} \subset T M
$$

and let g be the metric on Δ making f_{1}, f_{2} orthonormal.
$(M, \Delta, g)=$ sub-Riemannian manifold and $\gamma \in A C([0,1] ; M)$ is admissible if

$$
\dot{\gamma}=u_{1} f_{1}(\gamma)+u_{2} f_{2}(\gamma), \quad u=\left(u_{1}, u_{2}\right) \in L^{2}\left([0,1] ; \mathbb{R}^{2}\right) \quad \text { "control" }
$$

The length of γ is

$$
L(\gamma)=\int_{0}^{1}|u| d t
$$

Example, part 2

Now consider the admissible curve (it is a line)

$$
\gamma(t)=(0, t, 0), \quad t \in \mathbb{R}
$$

Example, part 2

Now consider the admissible curve (it is a line)

$$
\gamma(t)=(0, t, 0), \quad t \in \mathbb{R}
$$

Theorem. We have the following facts depending on $n \geq 2$.

Example, part 2

Now consider the admissible curve (it is a line)

$$
\gamma(t)=(0, t, 0), \quad t \in \mathbb{R}
$$

Theorem. We have the following facts depending on $n \geq 2$.
i) γ is the unique strictly singular (abnormal) extremal through $0 \in \mathbb{R}^{3}$.

Example, part 2

Now consider the admissible curve (it is a line)

$$
\gamma(t)=(0, t, 0), \quad t \in \mathbb{R}
$$

Theorem. We have the following facts depending on $n \geq 2$.
i) γ is the unique strictly singular (abnormal) extremal through $0 \in \mathbb{R}^{3}$.
ii) For even $n \geq 2, \gamma$ IS locally length minimizing (for fixed end-points).

Example, part 2

Now consider the admissible curve (it is a line)

$$
\gamma(t)=(0, t, 0), \quad t \in \mathbb{R} .
$$

Theorem. We have the following facts depending on $n \geq 2$.
i) γ is the unique strictly singular (abnormal) extremal through $0 \in \mathbb{R}^{3}$.
ii) For even $n \geq 2, \gamma$ IS locally length minimizing (for fixed end-points).
iii) For odd $n \geq 3, \gamma$ is NOT locally length minimizing.

Example, part 2

Now consider the admissible curve (it is a line)

$$
\gamma(t)=(0, t, 0), \quad t \in \mathbb{R}
$$

Theorem. We have the following facts depending on $n \geq 2$.
i) γ is the unique strictly singular (abnormal) extremal through $0 \in \mathbb{R}^{3}$.
ii) For even $n \geq 2, \gamma$ IS locally length minimizing (for fixed end-points).
iii) For odd $n \geq 3, \gamma$ is NOT locally length minimizing.

In this talk, I will try to explain WHY.

A difficult open problem

Let (M, Δ, g) a sub-Riemannian manifold, everything is smooth.

A difficult open problem

Let (M, Δ, g) a sub-Riemannian manifold, everything is smooth.
Question. Is any length minimizing curve in (M, Δ, g) of class C^{1} ?

A difficult open problem

Let (M, Δ, g) a sub-Riemannian manifold, everything is smooth.
Question. Is any length minimizing curve in (M, Δ, g) of class C^{1} ?
We do not know.

A difficult open problem

Let (M, Δ, g) a sub-Riemannian manifold, everything is smooth.
Question. Is any length minimizing curve in (M, Δ, g) of class C^{1} ?
We do not know.
Nice case. When the length min. curve γ is a normal extremal:

A difficult open problem

Let (M, Δ, g) a sub-Riemannian manifold, everything is smooth.
Question. Is any length minimizing curve in (M, Δ, g) of class C^{1} ?
We do not know.
Nice case. When the length min. curve γ is a normal extremal: γ normal $\stackrel{P M P}{\Rightarrow}$ Hamilton equations a.e. $\stackrel{\text { iteration }}{\Rightarrow} \gamma \in C^{\infty}$

A difficult open problem

Let (M, Δ, g) a sub-Riemannian manifold, everything is smooth.
Question. Is any length minimizing curve in (M, Δ, g) of class C^{1} ?
We do not know.
Nice case. When the length min. curve γ is a normal extremal:
γ normal $\stackrel{P M P}{\Rightarrow}$ Hamilton equations a.e. $\stackrel{\text { iteration }}{\Rightarrow} \gamma \in C^{\infty}$

Bad case. When γ is singular the situation is confused because there are many

- examples of singular extremals that are minimizing (all smooth);
- examples of nonsmooth singular extremals, we do not know if minimizing or not.

End-point map and singular controls

(M, Δ) sub-Riemannian manifold

- M smooth manifold
$-\Delta=\operatorname{span}\left\{f_{1}, \ldots, f_{d}\right\} \subset T M$ horiz. distribution (Hörmander condition)

End-point map and singular controls

(M, Δ) sub-Riemannian manifold

- M smooth manifold
$-\Delta=\operatorname{span}\left\{f_{1}, \ldots, f_{d}\right\} \subset T M$ horiz. distribution (Hörmander condition)
For $q \in M$ and $u \in X=L^{2}\left([0,1] ; \mathbb{R}^{d}\right)$ let $\gamma=\gamma_{q, u}$ be the solution to

$$
\dot{\gamma}=f_{u}(\gamma)=\sum_{i=1}^{d} u_{i} f_{i}(\gamma) \quad \text { on }[0,1], \quad \gamma(0)=q .
$$

End-point map and singular controls

(M, Δ) sub-Riemannian manifold

- M smooth manifold
$-\Delta=\operatorname{span}\left\{f_{1}, \ldots, f_{d}\right\} \subset T M$ horiz. distribution (Hörmander condition)
For $q \in M$ and $u \in X=L^{2}\left([0,1] ; \mathbb{R}^{d}\right)$ let $\gamma=\gamma_{q, u}$ be the solution to

$$
\dot{\gamma}=f_{u}(\gamma)=\sum_{i=1}^{d} u_{i} f_{i}(\gamma) \quad \text { on }[0,1], \quad \gamma(0)=q .
$$

The end-point map is the smooth map $F=F_{q}: X \rightarrow M$

$$
F(u)=\gamma_{q, u}(1) .
$$

End-point map and singular controls

(M, Δ) sub-Riemannian manifold

- M smooth manifold
$-\Delta=\operatorname{span}\left\{f_{1}, \ldots, f_{d}\right\} \subset T M$ horiz. distribution (Hörmander condition)
For $q \in M$ and $u \in X=L^{2}\left([0,1] ; \mathbb{R}^{d}\right)$ let $\gamma=\gamma_{q, u}$ be the solution to

$$
\dot{\gamma}=f_{u}(\gamma)=\sum_{i=1}^{d} u_{i} f_{i}(\gamma) \quad \text { on }[0,1], \quad \gamma(0)=q .
$$

The end-point map is the smooth map $F=F_{q}: X \rightarrow M$

$$
F(u)=\gamma_{q, u}(1) .
$$

Definition. The control $u \in X$ is singular if the differential $d_{u} F: X \rightarrow T_{F(u)} M$ is not surjective.

Known necessary conditions

Theorem. Let γ be a strictly sing. minimizing extremal in (M, Δ, g). Then any adjoint curve $\lambda:[0,1] \rightarrow T^{*} M$ satisfies:

Known necessary conditions

Theorem. Let γ be a strictly sing. minimizing extremal in (M, Δ, g). Then any adjoint curve $\lambda:[0,1] \rightarrow T^{*} M$ satisfies:
i) $\left\langle\lambda, f_{i}(\gamma)\right\rangle=0, i=1, \ldots, d$.
(PMP, "strictly" not needed here)

Known necessary conditions

Theorem. Let γ be a strictly sing. minimizing extremal in (M, Δ, g). Then any adjoint curve $\lambda:[0,1] \rightarrow T^{*} M$ satisfies:
i) $\left\langle\lambda, f_{i}(\gamma)\right\rangle=0, i=1, \ldots, d$ (PMP, "strictly" not needed here)
ii) $\left\langle\lambda,\left[f_{i}, f_{j}\right](\gamma)\right\rangle=0, i, j=1, \ldots, d$. (Goh condition, "strictly" needed)

Known necessary conditions

Theorem. Let γ be a strictly sing. minimizing extremal in (M, Δ, g). Then any adjoint curve $\lambda:[0,1] \rightarrow T^{*} M$ satisfies:
i) $\left\langle\lambda, f_{i}(\gamma)\right\rangle=0, i=1, \ldots, d . \quad$ (PMP, "strictly" not needed here)
ii) $\left\langle\lambda,\left[f_{i}, f_{j}\right](\gamma)\right\rangle=0, i, j=1, \ldots, d$. (Goh condition, "strictly" needed)

Comments:

1) The bracket $\left[f_{i}, f_{j}\right]$ appears in the computation for the Hessian $\mathscr{D}_{u}^{2} F$ of the end-point map F.

Known necessary conditions

Theorem. Let γ be a strictly sing. minimizing extremal in (M, Δ, g). Then any adjoint curve $\lambda:[0,1] \rightarrow T^{*} M$ satisfies:
i) $\left\langle\lambda, f_{i}(\gamma)\right\rangle=0, i=1, \ldots, d$ (PMP, "strictly" not needed here)
ii) $\left\langle\lambda,\left[f_{i}, f_{j}\right](\gamma)\right\rangle=0, i, j=1, \ldots, d$. (Goh condition, "strictly" needed)

Comments:

1) The bracket $\left[f_{i}, f_{j}\right]$ appears in the computation for the Hessian $\mathscr{D}_{u}^{2} F$ of the end-point map F.
2) The proof of ii) goes as follows:

$$
\left\langle\lambda,\left[f_{i}, f_{j}\right](\gamma)\right\rangle \neq 0 \quad \Rightarrow \quad \operatorname{index}\left(\mathscr{D}_{u}^{2} F\right)=\infty \quad \stackrel{\text { strictly }}{\Rightarrow} \quad \mathscr{F} \text { open }
$$

Above, $\mathscr{F}=(F, L)=$ extended end-point map with $L=$ length.

Some new necessary conditions

Theorem. (M, Δ, g) sub-Riemannian manifold, $\gamma=\gamma_{u} \in A C([0,1] ; M)$ strictly singular length minimizing curve of corank 1 .

Some new necessary conditions

Theorem. (M, Δ, g) sub-Riemannian manifold, $\gamma=\gamma_{u} \in A C([0,1] ; M)$ strictly singular length minimizing curve of corank 1 . Given $n \geq 3$, assume that

$$
\mathscr{D}_{u}^{h} F=0, \quad h=2, \ldots, n-1 .
$$

Some new necessary conditions

Theorem. (M, Δ, g) sub-Riemannian manifold, $\gamma=\gamma_{u} \in A C([0,1] ; M)$ strictly singular length minimizing curve of corank 1 . Given $n \geq 3$, assume that

$$
\mathscr{D}_{u}^{h} F=0, \quad h=2, \ldots, n-1 .
$$

Then any adjoint curve $\lambda \in A C\left([0,1] ; T^{*} M\right)$ satisfies
(*)

$$
\left\langle\lambda,\left[f_{j_{1}},\left[\ldots\left[f_{j_{n-1}}, f_{j_{n}}\right] \ldots\right]\right](\gamma)\right\rangle=0, \quad j_{1}, \ldots, j_{n}=1, \ldots, d
$$

Some new necessary conditions

Theorem. (M, Δ, g) sub-Riemannian manifold, $\gamma=\gamma_{u} \in A C([0,1] ; M)$ strictly singular length minimizing curve of corank 1 . Given $n \geq 3$, assume that

$$
\mathscr{D}_{u}^{h} F=0, \quad h=2, \ldots, n-1 .
$$

Then any adjoint curve $\lambda \in A C\left([0,1] ; T^{*} M\right)$ satisfies

$$
\begin{equation*}
\left\langle\lambda,\left[f_{j_{1}},\left[\ldots\left[f_{j_{n-1}}, f_{j_{n}}\right] \ldots\right]\right](\gamma)\right\rangle=0, \quad j_{1}, \ldots, j_{n}=1, \ldots, d \tag{*}
\end{equation*}
$$

Steps in the proof:

Some new necessary conditions

Theorem. (M, Δ, g) sub-Riemannian manifold, $\gamma=\gamma_{u} \in A C([0,1] ; M)$ strictly singular length minimizing curve of corank 1 . Given $n \geq 3$, assume that

$$
\mathscr{D}_{u}^{h} F=0, \quad h=2, \ldots, n-1 .
$$

Then any adjoint curve $\lambda \in A C\left([0,1] ; T^{*} M\right)$ satisfies
$(*) \quad\left\langle\lambda,\left[f_{j_{1}},\left[\ldots\left[f_{j_{n-1}}, f_{j_{n}}\right] \ldots\right]\right](\gamma)\right\rangle=0, \quad j_{1}, \ldots, j_{n}=1, \ldots, d$.

Steps in the proof:

1) Open mapping theorems of order n;

Some new necessary conditions

Theorem. (M, Δ, g) sub-Riemannian manifold, $\gamma=\gamma_{u} \in A C([0,1] ; M)$ strictly singular length minimizing curve of corank 1 . Given $n \geq 3$, assume that

$$
\mathscr{D}_{u}^{h} F=0, \quad h=2, \ldots, n-1 .
$$

Then any adjoint curve $\lambda \in A C\left([0,1] ; T^{*} M\right)$ satisfies
$(*) \quad\left\langle\lambda,\left[f_{j_{1}},\left[\ldots\left[f_{j_{n-1}}, f_{j_{n}}\right] \ldots\right]\right](\gamma)\right\rangle=0, \quad j_{1}, \ldots, j_{n}=1, \ldots, d$.

Steps in the proof:

1) Open mapping theorems of order n;
2) Taylor's expansion of the end-point map catching the "geometric term";

Some new necessary conditions

Theorem. (M, Δ, g) sub-Riemannian manifold, $\gamma=\gamma_{u} \in A C([0,1] ; M)$ strictly singular length minimizing curve of corank 1 . Given $n \geq 3$, assume that

$$
\mathscr{D}_{u}^{h} F=0, \quad h=2, \ldots, n-1 .
$$

Then any adjoint curve $\lambda \in A C\left([0,1] ; T^{*} M\right)$ satisfies
$(*) \quad\left\langle\lambda,\left[f_{j_{1}},\left[\ldots\left[f_{j_{n-1}}, f_{j_{n}}\right] \ldots\right]\right](\gamma)\right\rangle=0, \quad j_{1}, \ldots, j_{n}=1, \ldots, d$.

Steps in the proof:

1) Open mapping theorems of order n;
2) Taylor's expansion of the end-point map catching the "geometric term";
3) Use generalized Jacobi identities and shuffle algebras of iterated integrals;

Some new necessary conditions

Theorem. (M, Δ, g) sub-Riemannian manifold, $\gamma=\gamma_{u} \in A C([0,1] ; M)$ strictly singular length minimizing curve of corank 1 . Given $n \geq 3$, assume that

$$
\mathscr{D}_{u}^{h} F=0, \quad h=2, \ldots, n-1 .
$$

Then any adjoint curve $\lambda \in A C\left([0,1] ; T^{*} M\right)$ satisfies
$(*) \quad\left\langle\lambda,\left[f_{j_{1}},\left[\ldots\left[f_{j_{n-1}}, f_{j_{n}}\right] \ldots\right]\right](\gamma)\right\rangle=0, \quad j_{1}, \ldots, j_{n}=1, \ldots, d$.

Steps in the proof:

1) Open mapping theorems of order n;
2) Taylor's expansion of the end-point map catching the "geometric term";
3) Use generalized Jacobi identities and shuffle algebras of iterated integrals;
4) Controls of trigonometric type with sparse and high frequences to get (*).

Some new necessary conditions

Theorem. (M, Δ, g) sub-Riemannian manifold, $\gamma=\gamma_{u} \in A C([0,1] ; M)$ strictly singular length minimizing curve of corank 1 . Given $n \geq 3$, assume that

$$
\mathscr{D}_{u}^{h} F=0, \quad h=2, \ldots, n-1 .
$$

Then any adjoint curve $\lambda \in A C\left([0,1] ; T^{*} M\right)$ satisfies
$(*) \quad\left\langle\lambda,\left[f_{j_{1}},\left[\ldots\left[f_{j_{n-1}}, f_{j_{n}}\right] \ldots\right]\right](\gamma)\right\rangle=0, \quad j_{1}, \ldots, j_{n}=1, \ldots, d$.

Steps in the proof:

1) Open mapping theorems of order n;
2) Taylor's expansion of the end-point map catching the "geometric term";
3) Use generalized Jacobi identities and shuffle algebras of iterated integrals;
4) Controls of trigonometric type with sparse and high frequences to get (*).

Strictly singular

$X=$ Banach space
$\mathscr{F}: X \rightarrow M \times \mathbb{R} \equiv \mathbb{R}^{m}$ smooth mapping
$u \in X$ singular, say $u=0$

Strictly singular

$X=$ Banach space
$\mathscr{F}: X \rightarrow M \times \mathbb{R} \equiv \mathbb{R}^{m}$ smooth mapping
$u \in X$ singular, say $u=0$
In our case $\mathscr{F}=(F, L): X \rightarrow \mathbb{R}^{m}$ is the extended end-point map.

Strictly singular

$X=$ Banach space
$\mathscr{F}: X \rightarrow M \times \mathbb{R} \equiv \mathbb{R}^{m}$ smooth mapping
$u \in X$ singular, say $u=0$
In our case $\mathscr{F}=(F, L): X \rightarrow \mathbb{R}^{m}$ is the extended end-point map.
Definition. The cokernel of the differential of \mathscr{F} is

$$
\operatorname{coker}\left(d_{0} \mathscr{F}\right)=T_{F(0)} M \times \mathbb{R} / \operatorname{Im}\left(d_{0} \mathscr{F}\right)
$$

We denote by $\pi: T_{F(0)} M \times \mathbb{R} \rightarrow \operatorname{coker}\left(d_{0} \mathscr{F}\right)$ the projection.

Strictly singular

$X=$ Banach space
$\mathscr{F}: X \rightarrow M \times \mathbb{R} \equiv \mathbb{R}^{m}$ smooth mapping
$u \in X$ singular, say $u=0$
In our case $\mathscr{F}=(F, L): X \rightarrow \mathbb{R}^{m}$ is the extended end-point map.
Definition. The cokernel of the differential of \mathscr{F} is

$$
\operatorname{coker}\left(d_{0} \mathscr{F}\right)=T_{F(0)} M \times \mathbb{R} / \operatorname{Im}\left(d_{0} \mathscr{F}\right)
$$

We denote by $\pi: T_{F(0)} M \times \mathbb{R} \rightarrow \operatorname{coker}\left(d_{0} \mathscr{F}\right)$ the projection.
Definition. The singular point $u=0$ is strictly singular when

$$
\operatorname{coker}\left(d_{0} \mathscr{F}\right)=\operatorname{coker}\left(d_{0} F\right)=T_{F(0)} M / \operatorname{Im}\left(d_{0} F\right) .
$$

The L component is quotiented out by π.

Multi-linear differentials

Let $F: X \rightarrow \mathbb{R}^{m}$ be smooth, $n \in \mathbb{N}$ and $v_{1}, \ldots, v_{n} \in X$.
Definition. We define the n th-order multilinear derivative of F at $u=0$

$$
D_{0}^{n} F\left(v_{1}, \ldots, v_{n}\right)=\left.\frac{d^{n}}{d t^{n}} F\left(\sum_{k=1}^{n} \frac{t^{k}}{k!} v_{k}\right)\right|_{t=0}
$$

Multi-linear differentials

Let $F: X \rightarrow \mathbb{R}^{m}$ be smooth, $n \in \mathbb{N}$ and $v_{1}, \ldots, v_{n} \in X$.
Definition. We define the n th-order multilinear derivative of F at $u=0$

$$
D_{0}^{n} F\left(v_{1}, \ldots, v_{n}\right)=\left.\frac{d^{n}}{d t^{n}} F\left(\sum_{k=1}^{n} \frac{t^{k}}{k!} v_{k}\right)\right|_{t=0}
$$

Definition. By induction on $n \geq 2$ we define the domain (below $\left.v=\left(v_{1}, \ldots, v_{n-1}\right)\right)$

$$
\operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right)=\left\{v \in \operatorname{dom}\left(\mathscr{D}_{0}^{n-1} F\right) \times X \mid D_{0}^{n-1} F(v)=0\right\} \subset X^{n-1},
$$

Multi-linear differentials

Let $F: X \rightarrow \mathbb{R}^{m}$ be smooth, $n \in \mathbb{N}$ and $v_{1}, \ldots, v_{n} \in X$.
Definition. We define the n th-order multilinear derivative of F at $u=0$

$$
D_{0}^{n} F\left(v_{1}, \ldots, v_{n}\right)=\left.\frac{d^{n}}{d t^{n}} F\left(\sum_{k=1}^{n} \frac{t^{k}}{k!} v_{k}\right)\right|_{t=0}
$$

Definition. By induction on $n \geq 2$ we define the domain (below $\left.v=\left(v_{1}, \ldots, v_{n-1}\right)\right)$

$$
\operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right)=\left\{v \in \operatorname{dom}\left(\mathscr{D}_{0}^{n-1} F\right) \times X \mid D_{0}^{n-1} F(v)=0\right\} \subset X^{n-1},
$$

and the intrinsic differential $\mathscr{D}_{0}^{n} F: \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right) \rightarrow \operatorname{coker}\left(d_{0} F\right)$

$$
\mathscr{D}_{0}^{n} F(v)=\pi\left(D_{0}^{n} F(v, *)\right), \quad v \in \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right) .
$$

Multi-linear differentials

Let $F: X \rightarrow \mathbb{R}^{m}$ be smooth, $n \in \mathbb{N}$ and $v_{1}, \ldots, v_{n} \in X$.
Definition. We define the n th-order multilinear derivative of F at $u=0$

$$
D_{0}^{n} F\left(v_{1}, \ldots, v_{n}\right)=\left.\frac{d^{n}}{d t^{n}} F\left(\sum_{k=1}^{n} \frac{t^{k}}{k!} v_{k}\right)\right|_{t=0}
$$

Definition. By induction on $n \geq 2$ we define the domain (below $\left.v=\left(v_{1}, \ldots, v_{n-1}\right)\right)$

$$
\operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right)=\left\{v \in \operatorname{dom}\left(\mathscr{D}_{0}^{n-1} F\right) \times X \mid D_{0}^{n-1} F(v)=0\right\} \subset X^{n-1}
$$

and the intrinsic differential $\mathscr{D}_{0}^{n} F: \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right) \rightarrow \operatorname{coker}\left(d_{0} F\right)$

$$
\mathscr{D}_{0}^{n} F(v)=\pi\left(D_{0}^{n} F(v, *)\right), \quad v \in \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right)
$$

Comment. When $n=2$ we are defining the usual intrinsic Hessian

$$
\mathscr{D}_{0}^{2} F: \operatorname{ker}\left(d_{0} F\right) \rightarrow \operatorname{coker}\left(d_{0} F\right)
$$

Open mapping theorem

Theorem. $F: X \rightarrow \mathbb{R}^{m}$ smooth map and $u=0$ singular point, $n \geq 3$. Assume that:

Open mapping theorem

Theorem. $F: X \rightarrow \mathbb{R}^{m}$ smooth map and $u=0$ singular point, $n \geq 3$. Assume that:
i) $\mathscr{D}_{0}^{h} F=0, \quad 2 \leq h<n$;

Open mapping theorem

Theorem. $F: X \rightarrow \mathbb{R}^{m}$ smooth map and $u=0$ singular point, $n \geq 3$. Assume that:
i) $\mathscr{D}_{0}^{h} F=0, \quad 2 \leq h<n$;
ii) $\mathscr{D}_{0}^{n} F: \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right) \rightarrow \operatorname{coker}\left(d_{0} F\right)$ is regular.

Open mapping theorem

Theorem. $F: X \rightarrow \mathbb{R}^{m}$ smooth map and $u=0$ singular point, $n \geq 3$. Assume that:
i) $\mathscr{D}_{0}^{h} F=0, \quad 2 \leq h<n$;
ii) $\mathscr{D}_{0}^{n} F: \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right) \rightarrow \operatorname{coker}\left(d_{0} F\right)$ is regular.

Then F is open at 0 .

Open mapping theorem

Theorem. $F: X \rightarrow \mathbb{R}^{m}$ smooth map and $u=0$ singular point, $n \geq 3$. Assume that:
i) $\mathscr{D}_{0}^{h} F=0, \quad 2 \leq h<n$;
ii) $\mathscr{D}_{0}^{n} F: \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right) \rightarrow \operatorname{coker}\left(d_{0} F\right)$ is regular.

Then F is open at 0 .
I am not going to define "regular". However:
Lemma. Let $\operatorname{dim}\left(\operatorname{coker}\left(d_{0} F\right)\right)=1$ and assume:

Open mapping theorem

Theorem. $F: X \rightarrow \mathbb{R}^{m}$ smooth map and $u=0$ singular point, $n \geq 3$. Assume that:
i) $\mathscr{D}_{0}^{h} F=0, \quad 2 \leq h<n$;
ii) $\mathscr{D}_{0}^{n} F: \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right) \rightarrow \operatorname{coker}\left(d_{0} F\right)$ is regular.

Then F is open at 0 .
I am not going to define "regular". However:
Lemma. Let $\operatorname{dim}\left(\operatorname{coker}\left(d_{0} F\right)\right)=1$ and assume:
a) n odd and there is $v \in \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right)$ such that $\mathscr{D}_{0}^{n} F(v) \neq 0$; OR,

Open mapping theorem

Theorem. $F: X \rightarrow \mathbb{R}^{m}$ smooth map and $u=0$ singular point, $n \geq 3$. Assume that:
i) $\mathscr{D}_{0}^{h} F=0, \quad 2 \leq h<n$;
ii) $\mathscr{D}_{0}^{n} F: \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right) \rightarrow \operatorname{coker}\left(d_{0} F\right)$ is regular.

Then F is open at 0 .
I am not going to define "regular". However:
Lemma. Let $\operatorname{dim}\left(\operatorname{coker}\left(d_{0} F\right)\right)=1$ and assume:
a) n odd and there is $v \in \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right)$ such that $\mathscr{D}_{0}^{n} F(v) \neq 0$; OR,
b) n even and there are $v^{ \pm} \in \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right)$ such that $\mathscr{D}_{0}^{n} F\left(v^{ \pm}\right)= \pm 1$;

Open mapping theorem

Theorem. $F: X \rightarrow \mathbb{R}^{m}$ smooth map and $u=0$ singular point, $n \geq 3$. Assume that:
i) $\mathscr{D}_{0}^{h} F=0, \quad 2 \leq h<n$;
ii) $\mathscr{D}_{0}^{n} F: \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right) \rightarrow \operatorname{coker}\left(d_{0} F\right)$ is regular.

Then F is open at 0 .
I am not going to define "regular". However:
Lemma. Let $\operatorname{dim}\left(\operatorname{coker}\left(d_{0} F\right)\right)=1$ and assume:
a) n odd and there is $v \in \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right)$ such that $\mathscr{D}_{0}^{n} F(v) \neq 0$; OR,
b) n even and there are $v^{ \pm} \in \operatorname{dom}\left(\mathscr{D}_{0}^{n} F\right)$ such that $\mathscr{D}_{0}^{n} F\left(v^{ \pm}\right)= \pm 1$;

Then $\mathscr{D}_{0}^{n} F$ is regular.

Example, part 3

Consider again $M=\mathbb{R}^{3}$ with

$$
f_{1}=\frac{\partial}{\partial x}, \quad f_{2}=(1-x) \frac{\partial}{\partial y}+x^{n} \frac{\partial}{\partial z} .
$$

The curve $\gamma(t)=(0, t, 0)$ has control $u=(0,1)$.

Example, part 3

Consider again $M=\mathbb{R}^{3}$ with

$$
f_{1}=\frac{\partial}{\partial x}, \quad f_{2}=(1-x) \frac{\partial}{\partial y}+x^{n} \frac{\partial}{\partial z} .
$$

The curve $\gamma(t)=(0, t, 0)$ has control $u=(0,1)$.
After some (nontriavial) computations, we discover $\mathscr{D}_{u}^{h} F=0$ for $h \leq n-1$ and

$$
\mathscr{D}_{u}^{n} F(v)=\int_{0}^{1}\left(\int_{t}^{1} v_{1}(\tau) d \tau\right)^{n} d t .
$$

Example, part 3

Consider again $M=\mathbb{R}^{3}$ with

$$
f_{1}=\frac{\partial}{\partial x}, \quad f_{2}=(1-x) \frac{\partial}{\partial y}+x^{n} \frac{\partial}{\partial z} .
$$

The curve $\gamma(t)=(0, t, 0)$ has control $u=(0,1)$.
After some (nontriavial) computations, we discover $\mathscr{D}_{u}^{h} F=0$ for $h \leq n-1$ and

$$
\mathscr{D}_{u}^{n} F(v)=\int_{0}^{1}\left(\int_{t}^{1} v_{1}(\tau) d \tau\right)^{n} d t .
$$

We deduce that:

Example, part 3

Consider again $M=\mathbb{R}^{3}$ with

$$
f_{1}=\frac{\partial}{\partial x}, \quad f_{2}=(1-x) \frac{\partial}{\partial y}+x^{n} \frac{\partial}{\partial z} .
$$

The curve $\gamma(t)=(0, t, 0)$ has control $u=(0,1)$.
After some (nontriavial) computations, we discover $\mathscr{D}_{u}^{h} F=0$ for $h \leq n-1$ and

$$
\mathscr{D}_{u}^{n} F(v)=\int_{0}^{1}\left(\int_{t}^{1} v_{1}(\tau) d \tau\right)^{n} d t .
$$

We deduce that:
a) n odd: there is $v \in \operatorname{dom}\left(\mathscr{D}_{u}^{n} F\right)$ with $\mathscr{D}_{u}^{n} F(v) \neq 0$. So γ is not length minimizing.

Example, part 3

Consider again $M=\mathbb{R}^{3}$ with

$$
f_{1}=\frac{\partial}{\partial x}, \quad f_{2}=(1-x) \frac{\partial}{\partial y}+x^{n} \frac{\partial}{\partial z} .
$$

The curve $\gamma(t)=(0, t, 0)$ has control $u=(0,1)$.
After some (nontriavial) computations, we discover $\mathscr{D}_{u}^{h} F=0$ for $h \leq n-1$ and

$$
\mathscr{D}_{u}^{n} F(v)=\int_{0}^{1}\left(\int_{t}^{1} v_{1}(\tau) d \tau\right)^{n} d t .
$$

We deduce that:
a) n odd: there is $v \in \operatorname{dom}\left(\mathscr{D}_{u}^{n} F\right)$ with $\mathscr{D}_{u}^{n} F(v) \neq 0$. So γ is not length minimizing.
b) n even: we have $\mathscr{D}_{u}^{n} F \geq 0$. This "coercivity" is compatible with the local minimality of γ.

Taylor expansion, part 1

$(M, \Delta) \mathrm{SR}$ structure with $\Delta=\operatorname{span}\left\{f_{1}, \ldots, f_{d}\right\}$.

Taylor expansion, part 1

(M, Δ) SR structure with $\Delta=\operatorname{span}\left\{f_{1}, \ldots, f_{d}\right\}$.
Pull back via optimal flow. Let u be the control of γ. For $i=1, \ldots, d$ we define the time-dependent vector-fields

$$
g_{i}^{t}=g_{i}^{u, t}=\left(P_{t}^{1}\right)_{*} f_{i}=\operatorname{Ad}\left(\overrightarrow{\exp } \int_{1}^{t} f_{u(\tau)} d \tau\right) f_{i}
$$

Taylor expansion, part 1

$(M, \Delta) \mathrm{SR}$ structure with $\Delta=\operatorname{span}\left\{f_{1}, \ldots, f_{d}\right\}$.
Pull back via optimal flow. Let u be the control of γ. For $i=1, \ldots, d$ we define the time-dependent vector-fields

$$
g_{i}^{t}=g_{i}^{u, t}=\left(P_{t}^{1}\right)_{*} f_{i}=\operatorname{Ad}\left(\overrightarrow{\exp } \int_{1}^{t} f_{u(\tau)} d \tau\right) f_{i}
$$

Then we set

$$
g_{v}^{t}=\sum_{i=1}^{d} v_{i} g_{i}^{t}, \quad v=\left(v_{1}, \ldots, v_{d}\right)
$$

Taylor expansion, part 1

(M, Δ) SR structure with $\Delta=\operatorname{span}\left\{f_{1}, \ldots, f_{d}\right\}$.
Pull back via optimal flow. Let u be the control of γ. For $i=1, \ldots, d$ we define the time-dependent vector-fields

$$
g_{i}^{t}=g_{i}^{u, t}=\left(P_{t}^{1}\right)_{*} f_{i}=\operatorname{Ad}\left(\overrightarrow{\exp } \int_{1}^{t} f_{u(\tau)} d \tau\right) f_{i}
$$

Then we set

$$
g_{v}^{t}=\sum_{i=1}^{d} v_{i} g_{i}^{t}, \quad v=\left(v_{1}, \ldots, v_{d}\right)
$$

Localization of controls. For $t_{0} \in[0,1)$ and $s>0$ small we let

$$
v_{t_{0}, s}(t)=v\left(\frac{t-t_{0}}{s}\right) \chi_{\left[t_{0}, t_{0}+s\right]}(t), \quad t \in[0,1]
$$

Taylor expansion, part 2

Definition of V_{n-1}. We say that $v=\left(v^{1}, \ldots, v^{d}\right) \in L^{1}\left([0,1] ; \mathbb{R}^{d}\right)$ belongs to V_{n-1} if for any $1 \leq h \leq n-1$

$$
\int_{\Sigma_{h}} v^{j_{1}}\left(t_{1}\right) \ldots v^{j_{h}}\left(t_{h}\right) d t_{1} \ldots d t_{h}=0, \quad j_{1}, \ldots, j_{k} \in\{1, \ldots, d\}
$$

where $\Sigma_{h}=\left\{0<t_{h}<\ldots<t_{1}<1\right\} \subset \mathbb{R}^{h}$ is the standard h-simplex.

Taylor expansion, part 2

Definition of V_{n-1}. We say that $v=\left(v^{1}, \ldots, v^{d}\right) \in L^{1}\left([0,1] ; \mathbb{R}^{d}\right)$ belongs to V_{n-1} if for any $1 \leq h \leq n-1$

$$
\int_{\Sigma_{h}} v^{j_{1}}\left(t_{1}\right) \ldots v^{j_{h}}\left(t_{h}\right) d t_{1} \ldots d t_{h}=0, \quad j_{1}, \ldots, j_{k} \in\{1, \ldots, d\}
$$

where $\Sigma_{h}=\left\{0<t_{h}<\ldots<t_{1}<1\right\} \subset \mathbb{R}^{h}$ is the standard h-simplex.
Problem. V_{n-1} is not a linear space.

Taylor expansion, part 2

Definition of V_{n-1}. We say that $v=\left(v^{1}, \ldots, v^{d}\right) \in L^{1}\left([0,1] ; \mathbb{R}^{d}\right)$ belongs to V_{n-1} if for any $1 \leq h \leq n-1$

$$
\int_{\Sigma_{h}} v^{j_{1}}\left(t_{1}\right) \ldots v^{j_{n}}\left(t_{h}\right) d t_{1} \ldots d t_{h}=0, \quad j_{1}, \ldots, j_{k} \in\{1, \ldots, d\}
$$

where $\Sigma_{h}=\left\{0<t_{h}<\ldots<t_{1}<1\right\} \subset \mathbb{R}^{h}$ is the standard h-simplex.
Problem. V_{n-1} is not a linear space.
Theorem. If $v \in V_{n-1}$ then

$$
D_{u}^{n} F\left(v_{t_{0}, s}, *\right)=s^{n} \int_{\Sigma_{n}}\left[g_{v\left(t_{n}\right)}^{t_{0}},\left[\ldots,\left[g_{v\left(t_{2}\right)}^{t_{0}}, g_{v\left(t_{1}\right)}^{t_{0}}\right] \ldots\right]\right] d t+O\left(s^{n+1}\right) .
$$

Necessary conditions, part 1

Theorem. Let u be strictly singular of corank 1 . Assume that:

Necessary conditions, part 1

Theorem. Let u be strictly singular of corank 1 . Assume that:
i) $\mathscr{D}_{u}^{h} F=0$ for $1 \leq h \leq n-1$;

Necessary conditions, part 1

Theorem. Let u be strictly singular of corank 1 . Assume that:
i) $\mathscr{D}_{u}^{h} F=0$ for $1 \leq h \leq n-1$;
ii) For some $t_{0} \in[0,1)$ and $v \in V_{n-1}$ we have

$$
0 \neq \mathscr{G}_{t_{0}}(v)=\lim _{s \rightarrow 0^{+}} \frac{1}{s^{n}} \mathscr{D}_{u}^{n} F\left(v_{t_{0}, s}, *\right) .
$$

Necessary conditions, part 1

Theorem. Let u be strictly singular of corank 1 . Assume that:
i) $\mathscr{D}_{u}^{h} F=0$ for $1 \leq h \leq n-1$;
ii) For some $t_{0} \in[0,1)$ and $v \in V_{n-1}$ we have

$$
0 \neq \mathscr{G}_{t_{0}}(v)=\lim _{s \rightarrow 0^{+}} \frac{1}{s^{n}} \mathscr{D}_{u}^{n} F\left(v_{t_{0}, s}, *\right) .
$$

Then $\gamma=\gamma_{u}$ is NOT length minimizing.

Necessary conditions, part 1

Theorem. Let u be strictly singular of corank 1 . Assume that:
i) $\mathscr{D}_{u}^{h} F=0$ for $1 \leq h \leq n-1$;
ii) For some $t_{0} \in[0,1)$ and $v \in V_{n-1}$ we have

$$
0 \neq \mathscr{G}_{t_{0}}(v)=\lim _{s \rightarrow 0^{+}} \frac{1}{s^{n}} \mathscr{D}_{u}^{n} F\left(v_{t_{0}, s}, *\right) .
$$

Then $\gamma=\gamma_{u}$ is NOT length minimizing.
Problem. We need $\left(v_{t_{0}, s}, *\right) \in \operatorname{dom}\left(\mathscr{D}_{u}^{n} F\right)$. This is not trivial.

Necessary conditions, part 1

Theorem. Let u be strictly singular of corank 1 . Assume that:
i) $\mathscr{D}_{u}^{h} F=0$ for $1 \leq h \leq n-1$;
ii) For some $t_{0} \in[0,1)$ and $v \in V_{n-1}$ we have

$$
0 \neq \mathscr{G}_{t_{0}}(v)=\lim _{s \rightarrow 0^{+}} \frac{1}{s^{n}} \mathscr{D}_{u}^{n} F\left(v_{t_{0}, s}, *\right) .
$$

Then $\gamma=\gamma_{u}$ is NOT length minimizing.
Problem. We need $\left(v_{t_{0}, s}, *\right) \in \operatorname{dom}\left(\mathscr{D}_{u}^{n} F\right)$. This is not trivial.
Corollary. We have the necessary condition
$(\dagger) \quad 0=\mathscr{G}_{t_{0}}(v)=\sum_{\alpha}\left\langle\lambda,\left[g_{\alpha_{n}}^{t_{0}},\left[\ldots,\left[g_{\alpha_{2}}^{t_{0}}, g_{\alpha_{1}}^{t_{0}}\right] \ldots\right]\right]\right\rangle \int_{\Sigma_{n}} v^{\alpha_{n}}\left(t_{n}\right) \ldots v^{\alpha_{1}}\left(t_{1}\right) d t$,
where $\lambda=\lambda(1)$ is the covector at the end-point originating the adjoint curve.

Necessary conditions, part 2

The next steps are:

1) Polarization of equation (\dagger);

Necessary conditions, part 2

The next steps are:

1) Polarization of equation (\dagger);
2) Clean up the formula using Jacobi identities of order n.

Necessary conditions, part 2

The next steps are:

1) Polarization of equation (\dagger);
2) Clean up the formula using Jacobi identities of order n.
3) Find controls $v \in V_{n-1}$ such that the system (\dagger) becomes nonsingular.

Necessary conditions, part 2

The next steps are:

1) Polarization of equation (\dagger);
2) Clean up the formula using Jacobi identities of order n.
3) Find controls $v \in V_{n-1}$ such that the system (\dagger) becomes nonsingular.

Conclusion. For each fixed multi-index α we have

$$
\left\langle\lambda,\left[g_{\alpha_{n}}^{t_{0}},\left[\ldots,\left[g_{\alpha_{2}}^{t_{0}}, g_{\alpha_{1}}^{t_{0}}\right] \ldots\right]\right]\right\rangle=0
$$

These are the Goh conditions of order n.

You find the preprint on arxiv:
Boarotto, Monti, Socionovo
Higher order Goh conditions for singular extremals of corank 1

Or write me: monti@math.unipd.it

Thank you for your patient attention.

