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Example, part 1
In the manifold M = R3 consider the two vector fields

f1 =
∂

∂x
, f2 = (1− x)

∂

∂y
+ xn

∂

∂z
,

where n ∈ N is a parameter.

Consider the distribution of planes

∆ = span{f1, f2} ⊂ TM

and let g be the metric on ∆ making f1, f2 orthonormal.

(M,∆, g) = sub-Riemannian manifold and γ ∈ AC ([0, 1];M) is
admissible if

γ̇ = u1f1(γ) + u2f2(γ), u = (u1, u2) ∈ L2([0, 1];R2) “control”.

The length of γ is

L(γ) =

∫ 1

0

|u|dt.
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Example, part 2
Now consider the admissible curve (it is a line)

γ(t) = (0, t, 0), t ∈ R.

Theorem. We have the following facts depending on n ≥ 2.

i) γ is the unique strictly singular (abnormal) extremal through 0 ∈ R3.

ii) For even n ≥ 2, γ IS locally length minimizing (for fixed end-points).

iii) For odd n ≥ 3, γ is NOT locally length minimizing.

In this talk, I will try to explain WHY.
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A difficult open problem

Let (M,∆, g) a sub-Riemannian manifold, everything is smooth.

Question. Is any length minimizing curve in (M,∆, g) of class C 1?

We do not know.

Nice case. When the length min. curve γ is a normal extremal:

γ normal
PMP
⇒ Hamilton equations a.e.

iteration
⇒ γ ∈ C∞

Bad case. When γ is singular the situation is confused because there are
many

– examples of singular extremals that are minimizing (all smooth);
– examples of nonsmooth singular extremals, we do not know if
minimizing or not.
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End-point map and singular controls

(M,∆) sub-Riemannian manifold

– M smooth manifold
– ∆ = span{f1, . . . , fd} ⊂ TM horiz. distribution (Hörmander condition)

For q ∈ M and u ∈ X = L2([0, 1];Rd) let γ = γq,u be the solution to

γ̇ = fu(γ) =
d∑

i=1

ui fi (γ) on [0, 1], γ(0) = q.

The end-point map is the smooth map F = Fq : X → M

F (u) = γq,u(1).

Definition. The control u ∈ X is singular if the differential
duF : X → TF (u)M is not surjective.
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Known necessary conditions

Theorem. Let γ be a strictly sing. minimizing extremal in (M,∆, g).
Then any adjoint curve λ : [0, 1]→ T ∗M satisfies:

i) 〈λ, fi (γ)〉 = 0, i = 1, . . . , d . (PMP, “strictly” not needed here)

ii) 〈λ, [fi , fj ](γ)〉 = 0, i , j = 1, . . . , d . (Goh condition, “strictly” needed)

Comments:

1) The bracket [fi , fj ] appears in the computation for the Hessian D2
uF

of the end-point map F .

2) The proof of ii) goes as follows:

〈λ, [fi , fj ](γ)〉 6= 0 ⇒ index(D2
uF ) =∞ strictly

⇒ F open

Above, F = (F , L) = extended end-point map with L = length.
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Some new necessary conditions

Theorem. (M,∆, g) sub-Riemannian manifold, γ = γu ∈ AC ([0, 1];M)
strictly singular length minimizing curve of corank 1.

Given n ≥ 3,
assume that

Dh
uF = 0, h = 2, . . . , n − 1.

Then any adjoint curve λ ∈ AC ([0, 1];T ∗M) satisfies

(∗) 〈λ, [fj1 , [. . . [fjn−1 , fjn ] . . .]](γ)〉 = 0, j1, . . . , jn = 1, . . . , d .

Steps in the proof:

1) Open mapping theorems of order n;

2) Taylor’s expansion of the end-point map catching the “geometric
term”;

3) Use generalized Jacobi identities and shuffle algebras of iterated
integrals;

4) Controls of trigonometric type with sparse and high frequences to get
(∗).
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Strictly singular
X = Banach space
F : X → M × R ≡ Rm smooth mapping
u ∈ X singular, say u = 0

In our case F = (F , L) : X → Rm is the extended end-point map.

Definition. The cokernel of the differential of F is

coker(d0F ) = TF (0)M × R/Im(d0F ).

We denote by π : TF (0)M × R→ coker(d0F ) the projection.

Definition. The singular point u = 0 is strictly singular when

coker(d0F ) = coker(d0F ) = TF (0)M/Im(d0F ).

The L component is quotiented out by π.
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Multi-linear differentials

Let F : X → Rm be smooth, n ∈ N and v1, . . . , vn ∈ X .

Definition. We define the nth-order multilinear derivative of F at u = 0

Dn
0F (v1, . . . , vn) =

dn

dtn
F
( n∑

k=1

tk

k!
vk
)∣∣∣∣∣

t=0

.

Definition. By induction on n ≥ 2 we define the domain (below
v = (v1, . . . , vn−1))

dom(Dn
0F ) =

{
v ∈ dom(Dn−1

0 F )× X | Dn−1
0 F (v) = 0

}
⊂ X n−1,

and the intrinsic differential Dn
0F : dom(Dn

0F )→ coker(d0F )

Dn
0F (v) = π(Dn

0F (v , ∗)), v ∈ dom(Dn
0F ).

Comment. When n = 2 we are defining the usual intrinsic Hessian

D2
0F : ker(d0F )→ coker(d0F ).
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Open mapping theorem

Theorem. F : X → Rm smooth map and u = 0 singular point, n ≥ 3.
Assume that:

i) Dh
0F = 0, 2 ≤ h < n;

ii) Dn
0F : dom(Dn

0F )→ coker(d0F ) is regular.

Then F is open at 0.

I am not going to define “regular”. However:

Lemma. Let dim(coker(d0F )) = 1 and assume:

a) n odd and there is v ∈ dom(Dn
0F ) such that Dn

0F (v) 6= 0; OR,

b) n even and there are v± ∈ dom(Dn
0F ) such that Dn

0F (v±) = ±1;

Then Dn
0F is regular.
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Example, part 3
Consider again M = R3 with

f1 =
∂

∂x
, f2 = (1− x)

∂

∂y
+ xn

∂

∂z
.

The curve γ(t) = (0, t, 0) has control u = (0, 1).

After some (nontriavial) computations, we discover Dh
uF = 0 for

h ≤ n − 1 and

Dn
uF (v) =

∫ 1

0

(∫ 1

t

v1(τ)dτ

)n

dt.

We deduce that:

a) n odd: there is v ∈ dom(Dn
uF ) with Dn

uF (v) 6= 0. So γ is not length
minimizing.

b) n even: we have Dn
uF ≥ 0. This “coercivity” is compatible with the

local minimality of γ.
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Taylor expansion, part 1

(M,∆) SR structure with ∆ = span{f1, . . . , fd}.

Pull back via optimal flow. Let u be the control of γ. For i = 1, . . . , d
we define the time-dependent vector-fields

g t
i = gu,t

i = (P1
t )∗fi = Ad

(
−→exp

∫ t

1

fu(τ)dτ

)
fi .

Then we set

g t
v =

d∑
i=1

vig
t
i , v = (v1, . . . , vd).

Localization of controls. For t0 ∈ [0, 1) and s > 0 small we let

vt0,s(t) = v

(
t − t0

s

)
χ[t0,t0+s](t), t ∈ [0, 1].
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Taylor expansion, part 2

Definition of Vn−1. We say that v = (v1, . . . , vd) ∈ L1([0, 1];Rd)
belongs to Vn−1 if for any 1 ≤ h ≤ n − 1∫

Σh

v j1 (t1) . . . v jh(th)dt1 . . . dth = 0, j1, . . . , jk ∈ {1, . . . , d},

where Σh = {0 < th < . . . < t1 < 1} ⊂ Rh is the standard h-simplex.

Problem. Vn−1 is not a linear space.

Theorem. If v ∈ Vn−1 then

Dn
uF (vt0,s , ∗) = sn

∫
Σn

[g t0

v(tn), [. . . , [g
t0

v(t2), g
t0

v(t1)] . . .]]dt + O(sn+1).



Taylor expansion, part 2

Definition of Vn−1. We say that v = (v1, . . . , vd) ∈ L1([0, 1];Rd)
belongs to Vn−1 if for any 1 ≤ h ≤ n − 1∫

Σh

v j1 (t1) . . . v jh(th)dt1 . . . dth = 0, j1, . . . , jk ∈ {1, . . . , d},

where Σh = {0 < th < . . . < t1 < 1} ⊂ Rh is the standard h-simplex.

Problem. Vn−1 is not a linear space.

Theorem. If v ∈ Vn−1 then

Dn
uF (vt0,s , ∗) = sn

∫
Σn

[g t0

v(tn), [. . . , [g
t0

v(t2), g
t0

v(t1)] . . .]]dt + O(sn+1).



Taylor expansion, part 2

Definition of Vn−1. We say that v = (v1, . . . , vd) ∈ L1([0, 1];Rd)
belongs to Vn−1 if for any 1 ≤ h ≤ n − 1∫

Σh

v j1 (t1) . . . v jh(th)dt1 . . . dth = 0, j1, . . . , jk ∈ {1, . . . , d},

where Σh = {0 < th < . . . < t1 < 1} ⊂ Rh is the standard h-simplex.

Problem. Vn−1 is not a linear space.

Theorem. If v ∈ Vn−1 then

Dn
uF (vt0,s , ∗) = sn

∫
Σn

[g t0

v(tn), [. . . , [g
t0

v(t2), g
t0

v(t1)] . . .]]dt + O(sn+1).



Necessary conditions, part 1

Theorem. Let u be strictly singular of corank 1. Assume that:

i) Dh
uF = 0 for 1 ≤ h ≤ n − 1;

ii) For some t0 ∈ [0, 1) and v ∈ Vn−1 we have

0 6= Gt0 (v) = lim
s→0+

1

sn
Dn

uF (vt0,s , ∗).

Then γ = γu is NOT length minimizing.

Problem. We need (vt0,s , ∗) ∈ dom(Dn
uF ). This is not trivial.

Corollary. We have the necessary condition

(†) 0 = Gt0 (v) =
∑
α

〈λ, [g t0
αn
, [. . . , [g t0

α2
, g t0
α1

] . . .]]〉
∫

Σn

vαn(tn) . . . vα1 (t1)dt,

where λ = λ(1) is the covector at the end-point originating the adjoint
curve.
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Necessary conditions, part 2

The next steps are:

1) Polarization of equation (†);

2) Clean up the formula using Jacobi identities of order n.

3) Find controls v ∈ Vn−1 such that the system (†) becomes nonsingular.

Conclusion. For each fixed multi-index α we have

〈λ, [g t0
αn
, [. . . , [g t0

α2
, g t0
α1

] . . .]]〉 = 0.

These are the Goh conditions of order n.



Necessary conditions, part 2

The next steps are:

1) Polarization of equation (†);

2) Clean up the formula using Jacobi identities of order n.

3) Find controls v ∈ Vn−1 such that the system (†) becomes nonsingular.

Conclusion. For each fixed multi-index α we have

〈λ, [g t0
αn
, [. . . , [g t0

α2
, g t0
α1

] . . .]]〉 = 0.

These are the Goh conditions of order n.



Necessary conditions, part 2

The next steps are:

1) Polarization of equation (†);

2) Clean up the formula using Jacobi identities of order n.

3) Find controls v ∈ Vn−1 such that the system (†) becomes nonsingular.

Conclusion. For each fixed multi-index α we have

〈λ, [g t0
αn
, [. . . , [g t0

α2
, g t0
α1

] . . .]]〉 = 0.

These are the Goh conditions of order n.



Necessary conditions, part 2

The next steps are:

1) Polarization of equation (†);

2) Clean up the formula using Jacobi identities of order n.

3) Find controls v ∈ Vn−1 such that the system (†) becomes nonsingular.

Conclusion. For each fixed multi-index α we have

〈λ, [g t0
αn
, [. . . , [g t0

α2
, g t0
α1

] . . .]]〉 = 0.

These are the Goh conditions of order n.



You find the preprint on arxiv:

Boarotto, Monti, Socionovo
Higher order Goh conditions for singular extremals of corank 1

Or write me: monti@math.unipd.it

Thank you for your patient attention.
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