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Ulisse Dini (1845 – 1918)

Dini directional derivative
for f : Rn → (−∞, +∞]

D f(x; v) := lim inf
t↓0,w→v

f(x + tw) − f(x)

t
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Nonsmooth (non-differentiable) Functions are Natural

Envelopes of parametric families {fγ(x)}γ∈Γ

f(x) = sup
γ∈Γ

fγ(x), h(x) = inf
γ∈Γ

fγ(x)

(sup-envelope and inf-envelope)
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Nonsmooth (non-differentiable) Functions are Natural

Envelopes of parametric families {fγ(x)}γ∈Γ

f(x) = sup
γ∈Γ

fγ(x), h(x) = inf
γ∈Γ

fγ(x)

(sup-envelope and inf-envelope)
k-th largest eigenvalue of a symmetric matrix A ∈ Rn×n:

λk(A) = max
X∈S(k,n)

tr(XT AX) − max
X∈S(k−1,n)

tr(XT AX)

where the Stiefel manifold

S(k, n) := {X ∈ Rn×k : XT X = Ik}
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Nonsmooth (non-differentiable) Functions are Natural

Nonsmooth control Lyapunov functions:
Finite dimensional nonlinear control system:

ẋ(t) = f(x(t), u(t)), x(t) ∈ Rn, u(t) ∈ U

x - state vector, u - control
(null-) asymptotic controllability :

for each x0 ∃ “open loop” control u : [0, +∞) → U

x(t; x0, u) → 0

feedback stabilizer :
k : Rn → U s.t. all trajectories of the system

ẋ = f(x, k(x))

x(t) → 0 in some uniform and stable manner
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Nonsmooth (non-differentiable) Functions are Natural

Long-standing question:

Asymptotic controllability ∃ stabilizing feedback control?
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Nonsmooth (non-differentiable) Functions are Natural

Long-standing question:

Asymptotic controllability ∃ stabilizing feedback control?

Obvious answer if ∃ smooth control Lyapunov function V and
continuous feedback k(x) s.t.

〈V ′(x), f(x, k(x))〉 ≤ −W (x) < 0 ∀ x 6= 0
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Nonsmooth (non-differentiable) Functions are Natural

Long-standing question:

Asymptotic controllability ∃ stabilizing feedback control?

Obvious answer if ∃ smooth control Lyapunov function V and
continuous feedback k(x) s.t.

〈V ′(x), f(x, k(x))〉 ≤ −W (x) < 0 ∀ x 6= 0

But there are topological obstacles to existence of smooth

control Lyapunov function and continuous feedback.
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Nonsmooth (non-differentiable) Functions are Natural

Long-standing question:

Asymptotic controllability ∃ stabilizing feedback control?

Obvious answer if ∃ smooth control Lyapunov function V and
continuous feedback k(x) s.t.

〈V ′(x), f(x, k(x))〉 ≤ −W (x) < 0 ∀ x 6= 0

But there topological obstacles to existence of smooth control

Lyapunov function and continuous feedback.
Sontag 1984 ∃ continuous control Lyapunov function

min
v∈co f(x,U)

DV (x; v) ≤ −W (x) < 0 ∀ x 6= 0
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Nonsmooth (non-differentiable) Functions are Natural

Long-standing question:

Asymptotic controllability ∃ stabilizing feedback control?

Obvious answer if ∃ smooth control Lyapunov function V and
continuous feedback k(x) s.t.

〈V ′(x), f(x, k(x))〉 ≤ −W (x) < 0 ∀ x 6= 0

But there topological obstacles to existence of smooth control

Lyapunov function and continuous feedback.
Sontag 1984 ∃ continuous control Lyapunov function

min
v∈co f(x,U)

DV (x; v) ≤ −W (x) < 0 ∀ x 6= 0

Affirmative answer: Clarke, Ledyaev, Sontag, Subbotin 1996

Asymptotic controllability IFF ∃ stabilizing feedback control
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Infinitesimal Properties of Nonsmooth Functions

How to characterize infinitesimal properties of non-differentiable
(nonsmooth) functions
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Infinitesimal Properties of Nonsmooth Functions

Dini directional derivative
for f : Rn → (−∞, +∞]

D f(x; v) := lim inf
t↓0,w→v

f(x + tw) − f(x)

t

Subgradient ζ ∈ ∂f(x) definition:
∃ smooth g : Rn → R such that ζ = g′(x), function f(y) − g(y)
attains local minimum at x
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Infinitesimal Properties of Nonsmooth Functions

Dini directional derivative
for f : Rn → (−∞, +∞]

D f(x; v) := lim inf
t↓0,w→v

f(x + tw) − f(x)

t

Subgradient ζ ∈ ∂f(x) definition:
∃ smooth g : Rn → R such that ζ = g′(x), function f(y) − g(y)
attains local minimum at x

f(y) is convex, g(y) = a + 〈ζ, y〉 is affine (subgradient in convex
analysis sense)

f is lower semicontinuous, g(y) = a + 〈ζ, y〉 − σ‖y − x‖2

(proximal subgradient)

f is lower semicontinuous, g(y) is differentiable (smooth) (
"Fréchet" subgradient)
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Infinitesimal Properties of Nonsmooth Functions
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Infinitesimal Properties of Nonsmooth Functions

(g(x),-1)
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Infinitesimal Properties of Nonsmooth Functions

Foundations of nonsmooth analysis:
Clarke, Danskin, Demyanov, Ioffe, Mordukhovich, Moreau, Pschenichny,
Rockafellar, Rubinov, Subbotin, Vinter, Borwein
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Infinitesimal Properties of Nonsmooth Functions

What is relation between subgradients and directional derivatives?
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Infinitesimal Properties of Nonsmooth Functions

What is relation between subgradients and directional derivatives?
Obvious : if ζ ∈ ∂f(x) then (use g(y)− g(x) ≤ f(y)− f(x) ∀ y near x)

〈ζ, v〉 ≤ Df(x; v) ∀v
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Infinitesimal Properties of Nonsmooth Functions

What is a relation between subgradients and directional
derivatives?
Obvious : if ζ ∈ ∂f(x) then

〈ζ, v〉 ≤ Df(x; v) ∀v

Non-obvious :
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Infinitesimal Properties of Nonsmooth Functions

What is a relation between subgradients and directional
derivatives?
Obvious : if ζ ∈ ∂f(x) then

〈ζ, v〉 ≤ Df(x; v) ∀v

Non-obvious : Subbotin’s Theorem
THEOREM: Let V ⊂ Rn be nonempty, convex, and
bounded, f : Rn → R ∪ {+∞} be lower semicontinuous.
For ∀ r such that

inf
v∈V

Df(x; v) > r

and ∀ ε > 0 ∃ z ∈ x + εBRn with |f(z) − f(x)| < ε and
ζ ∈ ∂F f(z) such that

min
v∈V

〈ζ, v〉 > r
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Infinitesimal Properties of Nonsmooth Functions

Applications of Subbotin’s theorem:

equivalence of Subbotin’s minmax solutions (1980) of
Hamilton-Jacobi equations and viscosity solutions

for control Lyapunov function: condition

min
v∈co f(x,U)

DV (x; v) ≤ −W (x) < 0 ∀ x 6= 0

is equivalent to the condition

min
u∈U

〈V ′, f(x, u)〉 ≤ −W (x) < 0 ∀ V ′ ∈ ∂V (x), x 6= 0

How to prove Subbotin’s theorem?

Geometric Control Seminar, MSU, April 22, 2020 – p. 4/11



Multidirectional Mean Value Inequalities

Classical (Lagrange ) Mean value Theorem: ∃ z ∈ [x0, x]

f(x) − f(x0) = 〈f ′(z), x − x0〉
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Multidirectional Mean Value Inequalities

Classical (Lagrange ) Mean value Theorem: ∃ z ∈ [x0, x]

f(x) − f(x0) = 〈f ′(z), x − x0〉

Multidirectional Mean Value Inequality (Clarke and Ledyaev ) for
differentiable f , convex, closed and bounded set X ⊂ Rn:
∃ z ∈ [x0, X ] := co ({x0} ∪ X)

min
x∈X

f(x) − f(x0) ≤ 〈f ′(z), x − x0〉 ∀ x ∈ X
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Multidirectional Mean Value Inequalities

Classical (Lagrange ) Mean value Theorem: ∃ z ∈ [x0, x]

f(x) − f(x0) = 〈f ′(z), x − x0〉

Multidirectional Mean Value Inequality (Clarke and Ledyaev ) for
differentiable f , convex, closed and bounded set X ⊂ Rn:
∃ z ∈ [x0, X ] := co ({x0} ∪ X)

min
x∈X

f(x) − f(x0) ≤ 〈f ′(z), x − x0〉 ∀ x ∈ X

Proof by using ”clever function” :

h(t, y) := f(x0 + t(y − x0)) − f(x0) − rt, y ∈ X, t ∈ [0, 1]

where
r := min

x∈X
f(x) − f(x0)
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Multidirectional Mean Value Inequalities

Classical (Lagrange ) Mean value Theorem: ∃ z ∈ [x0, x]

f(x) − f(x0) = 〈f ′(z), x − x0〉

Multidirectional Mean Value Inequality (Clarke and Ledyaev ) for
differentiable f , convex, closed and bounded set X ⊂ Rn:
∃ z ∈ [x0, X ] := co ({x0} ∪ X)

min
x∈X

f(x) − f(x0) ≤ 〈f ′(z), x − x0〉 ∀ x ∈ X

General case (Clarke and Ledyaev 1994 ): lower semicontinuous
f : E→ R ∪ {+∞}, E - Hilbert space, X ⊂ E closed, convex and
bounded
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Multidirectional Mean Value Inequalities

General case (Clarke and Ledyaev 1994 ): lower semicontinuous
f : E→ R ∪ {+∞}, E - Hilbert space, X ⊂ E closed, convex and
bounded

THEOREM: For ∀ r and ε > 0

r < sup
δ>0

inf
x∈X+δB

f(x) − f(x0)

∃ z ∈ [x0, X ] + εB and ζ ∈ ∂P f(z)

r < 〈ζ, x − x0〉 ∀ x ∈ X

and f(z) ≤ infx∈X f(x) + max{0, r} + ε.

Geometric Control Seminar, MSU, April 22, 2020 – p. 5/11



Multidirectional Mean Value Inequalities

General case (Clarke and Ledyaev 1994 ): lower semicontinuous
f : E→ R ∪ {+∞}, E - Hilbert space, X ⊂ E closed, convex and
bounded

THEOREM: For ∀ r and ε > 0

r < sup
δ>0

inf
x∈X+δB

f(x) − f(x0)

∃ z ∈ [x0, X ] + εB and ζ ∈ ∂P f(z)

r < 〈ζ, x − x0〉 ∀ x ∈ X

Generalizations: Aussel, Corvellec, Lassonde , Clarke, Radulescu , Ivanov,
Zlateva , Zhu et al.
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Multidirectional Mean Value Inequalities

Generalization of Subbotin’s theorem for smooth Banach spaces E:

THEOREM: Let V ⊂ E be nonempty, convex, and
bounded, f : E→ R ∪ {+∞} be lower semicontinuous.
For ∀ r such that

inf
v∈V

Dwf(x; v) > r

and ∀ ε > 0 ∃ z ∈ x + εBRn with |f(z) − f(x)| < ε and
ζ ∈ ∂F f(z) such that

min
v∈V

〈ζ, v〉 > r
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Multidirectional Mean Value Inequalities

Generalization of Subbotin’s theorem for smooth Banach spaces E:

THEOREM: Let V ⊂ E be nonempty, convex, and
bounded, f : E→ R ∪ {+∞} be lower semicontinuous.
For ∀ r such that

inf
v∈V

Dw f(x; v) > r

and ∀ ε > 0 ∃ z ∈ x + εBRn with |f(z) − f(x)| < ε and
ζ ∈ ∂F f(z) such that

min
v∈V

〈ζ, v〉 > r

where

Dwf(x; v) := lim inf
t↓0,u

w−→v

f(x + tu) − f(x)

t
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Applications of Multidirectional MVI

Implicit Multifunction Theorems
Let F (x, p) = G(x, p) − K where G : E× P→ Y smooth function,
K ⊂ Y - closed convex cone.
Implicit multifunction

X(p) := {x ∈ X : G(x, p) ∈ K or 0 ∈ F (x, p)}

Let 0 ∈ F (x0, p0) and Gx(x0, p0)X−K = Y.
Then for ∀ x, p near x0, p0

X(p) 6= ∅, d(x, X(p) ≤ kd(0, F (x, p))
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Applications of Multidirectional MVI

Let f : E→ R be lower semicontinuous

S := {x ∈ E : f(x) ≤ 0}

Assumptions: ∃ Δ > 0 such that ∀ x 6∈ S

‖ζ‖ > Δ ∀ ζ ∈ ∂F f(x)

If S = ∅ then for any ρ > 0 by the multidirectional MVI ∃ ζ ∈ ∂F f(z)

inf
x∈x0+ρB

f(x) ≤ f(x0)+ min
x∈x0+ρB

〈ζ, x−x0〉 = f(x0)−ρ‖ζ‖ < f(x0)−ρΔ

Contradiction if ρ > f(x0)/Δ! Thus, (x ∈ x0 + ρB) ∩ S 6= ∅ and

dS(x0) ≤
f(x0)

Δ
METRIC REGULARITY and SOLVABILITY
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Applications of Multidirectional MVI

Let F (x, p) be multifunction , F (x, p) ⊂ Y
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Applications of Multidirectional MVI

Let F (x, p) be multifunction , F (x, p) ⊂ Y

Consider implicit multifunction X(p)

X(p) := {x ∈ E : 0 ∈ F (x, p)}

define f(x, p) := dF (x,p)(0)

and obtain
”Implicit Multifunction Theorems” (1999) Ledyaev and Zhu
even earlier ’Theorems on Implicitly-Defined Multi-Valued Mappings”
(1984) Ledyaev
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Applications of Multidirectional MVI

Representation of subgradients of sup- and inf-envelopes of
parametric family {fγ(x)}γ∈Γ

f(x) := sup
γ∈Γ

fγ(x), h(x) := inf
γ∈Γ

fγ(x)

fγ(x) := γ sin(γx) −
γ2

4
, γ ∈ [−2, 2]

–3

–2

–1

0

1

–4 –3 –2 –1 1 2 3 4
x

Geometric Control Seminar, MSU, April 22, 2020 – p. 6/11



Applications of Multidirectional MVI

Representation of subgradients of sup- and inf-envelopes of
parametric family {fγ(x)}γ∈Γ

f(x) := sup
γ∈Γ

fγ(x), h(x) := inf
γ∈Γ

fγ(x)

Let ζ ∈ ∂F f(x). Then, ∀ ε > 0 and ∀δ > 0, ∃ convex coefficients
{αk}, pairs (xk, γk) ∈ Gδ(x), k = 1, . . . , K, such that

ζ ∈
K∑

k=1

αk∂F fγk(xk) + εB

If, in addition, the functions fγ are continuous then the set Gδ(x)

can be replaced by the smaller set G0
δ(x).

Gδ(x) := {(z, γ) ∈ X×Γ : z ∈ [x, y]+δB ∃ y ∈ x+δB, fγ(y) ≥ f(x)−δ}
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Applications of Multidirectional MVI

Representation of subgradients of sup- and inf-envelopes of
parametric family {fγ(x)}γ∈Γ

f(x) := sup
γ∈Γ

fγ(x), h(x) := inf
γ∈Γ

fγ(x)

Let ζ ∈ ∂F f(x). Then, ∀ ε > 0 and ∀δ > 0, ∃ convex coefficients
{αk}, pairs (xk, γk) ∈ Gδ(x), k = 1, . . . , K, such that

ζ ∈
K∑

k=1

αk∂F fγk(xk) + εB

If, in addition, the functions fγ are continuous then the set Gδ(x)

can be replaced by the smaller set G0
δ(x).

Gδ(x) := {(z, γ) ∈ X×Γ : z ∈ [x, y]+δB ∃ y ∈ x+δB, fγ(y) ≥ f(x)−δ}

In the case x ∈ Rn then K = n + 1!
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Applications of Multidirectional MVI

Applications for manifolds of nonpositive curvature:
Jung theorem’s generalization on radius of circumscribed ball

R(S) ≤
1

2

√
2n

n + 1
D(S)

Helly theorem generalization for intersection of convex sets on
manifolds of nonpositive curvature
Ledyaev, Treiman and Zhu

THEOREM: Let K = {Kγ}γ∈Γ be a family of convex
sets and Γ is finite, or all Kγ are compact. Then if
any n + 1 sets from K have a common point, all sets
Kγ have a common point.
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Applications of Multidirectional MVI

Representation of subgradients of sup- and inf-envelopes of
parametric family {fγ(x)}γ∈Γ

f(x) := sup
γ∈Γ

fγ(x), h(x) := inf
γ∈Γ

fγ(x)

Let ζ ∈ ∂F h ∃ function ϕ(ε) s.t. ϕ(ε) ↓ 0 as ε ↓ 0 and ∀ ε > 0,
and ∀ (γε, xε) with

xε ∈ x + εB and fγε(xε) < h(x) + ε

there exist z ∈ x + 2
√

εB s.t.

fγε(z) < h(x) + O(
√

ε)

and
ζ ∈ ∂F fγε(z) + ϕ(ε)B.
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Applications of Multidirectional MVI

Application:
Existence and uniqueness of minimizers!
For, example (for simplicity E is Hilbert):

h(x?) := inf
y∈S

(f(y) + 〈x?, y〉)

If for some (a.a.) x? ∈ E? ∃ζ ∈ ∂F h(x?) 6= ∅ ∀ε > 0 ∃ yε ∈ S,
f(yε) + 〈x?, yε〉 < h(x?) + ε

ζ ∈ yε + ϕ(ε)B

ε-minimizer yε converges to unique minimizer y0 = ζ of the
function

y → f(y) + 〈x?, y〉

on bounded S - generalization of Stegall variational principle
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Applications of Multidirectional MVI

Uniqueness of closest points to the set S ⊂ E,for simplicity E is
Hilbert.
Consider function

h(x) := inf
y∈S

‖x − y‖2 = d2
S(x)

Let ζ ∈ ∂F h(x) ∀ε > 0 ∃ yε ∈ S

‖x − yε‖
2 < h(x) + ε, ζ = 2(x − yε) + ϕ(ε)B

yε converges to y0 = x − ζ/2 unique closest to x point in S.
More results in
Ledyaev and Treiman ”Sub- and Super-gradients of Envelopes,
Semicontinuous Closures and Limits of Functions”
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Nonsmooth Calculus of Variations Problems

Application of multidirectional MVI to deriving optimality conditions
for nonsmooth calculus of variations problem
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Nonsmooth Calculus of Variations Problems

Application of multidirectional MVI to deriving optimality conditions
for nonsmooth calculus of variations problem
Consider minimizer x∗ of a nonsmooth functional
J : W 1,p → R ∪ {+∞} of the form

J(x) = `(x(a), x(b)) +

∫ b

a
L(t, x(t), ẋ(t)) dt,

where W 1,p (1 ≤ p ≤ ∞) denotes the Banach space of absolutely
continuous maps x : [a, b] → Rd satisfying ẋ ∈ Lp(a, b;Rn).
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Nonsmooth Calculus of Variations Problems

Application of multidirectional MVI to deriving optimality conditions
for nonsmooth calculus of variations problem
Consider minimizer x∗ of a nonsmooth functional
J : W 1,p → R ∪ {+∞} of the form

J(x) = `(x(a), x(b)) +

∫ b

a
L(t, x(t), ẋ(t)) dt,

where W 1,p (1 ≤ p ≤ ∞) denotes the Banach space of absolutely
continuous maps x : [a, b] → Rd satisfying ẋ ∈ Lp(a, b;Rn).
Motivation: Nonsmooth calculus of variations problems on
manifolds. No exact proofs in the literature even for smooth
problems!
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Nonsmooth Calculus of Variations Problems

Application of multidirectional MVI to deriving optimality conditions
for nonsmooth calculus of variations problem
Consider minimizer x∗ of a nonsmooth functional
J : W 1,p → R ∪ {+∞} of the form

J(x) = `(x(a), x(b)) +

∫ b

a
L(t, x(t), ẋ(t)) dt,

where W 1,p (1 ≤ p ≤ ∞) denotes the Banach space of absolutely
continuous maps x : [a, b] → Rd satisfying ẋ ∈ Lp(a, b;Rn).
Motivation: Nonsmooth calculus of variations problems on
manifolds. No exact proofs in the literature even for smooth
problems!
Difficulties for manifolds – combining global and local!

Geometric Control Seminar, MSU, April 22, 2020 – p. 7/11



Nonsmooth Calculus of Variations Problems

Consider minimizer x∗ of a nonsmooth functional
J : W 1,p → R ∪ {+∞} of the form

J(x) = `(x(a), x(b)) +

∫ b

a
L(t, x(t), ẋ(t)) dt,

where W 1,p (1 ≤ p ≤ ∞) denotes the Banach space of absolutely
continuous maps x : [a, b] → Rd satisfying ẋ ∈ Lp(a, b;Rn).
Motivation: Nonsmooth calculus of variations problems on
manifolds. No exact proofs in the literature even for smooth
problems!
Difficulties for manifolds – combining global and local!
Kipka and Ledyaev “Optimal control of differential inclusions on
manifolds” based on
Kipka and Ledyaev “Extension of Chronological Calculus for Dynamical
Systems on Manifolds”
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Nonsmooth Calculus of Variations Problems

Consider minimizer x∗ of a nonsmooth functional
J : W 1,p → R ∪ {+∞} of the form

J(x) = `(x(a), x(b)) +

∫ b

a
L(t, x(t), ẋ(t)) dt,

Long history: starting with Clarke , in 1990s important developments
Mordukhovich, Rockafellar, Ioffe, Smirnov, Vinter
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Nonsmooth Calculus of Variations Problems

Consider minimizer x∗ of a nonsmooth functional
J : W 1,p → R ∪ {+∞} of the form

J(x) = `(x(a), x(b)) +

∫ b

a
L(t, x(t), ẋ(t)) dt,

Long history: starting with Clarke , in 1990s important developments
Mordukhovich, Rockafellar, Ioffe, Smirnov, Vinter
For problems with differential constraints

ẋ(t) ∈ F (t, x(t))

consider penalized nonsmooth functional with

L(t, x, ẋ) := L0(t, x, ẋ) + kd(ẋ, F (t, x))
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Nonsmooth Calculus of Variations Problems

Consider minimizer x∗ of a nonsmooth functional
J : W 1,p → R ∪ {+∞} of the form

J(x) = `(x(a), x(b)) +

∫ b

a
L(t, x(t), ẋ(t)) dt,

Long history: starting with Clarke , in 1990s important developments
Mordukhovich, Rockafellar, Ioffe, Smirnov, Vinter

In this work we generalize a result by Clarke from
Clarke “ Functional analysis, calculus of variations, and optimal control” ,
Springer-Verlag, 2013.
Some assumptions are relaxed and shorter proof based on MVI
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Assumptions and Optimality Conditions

Minimize

J(x) = `(x(a), x(b)) +

∫ b

a
L(t, x(t), ẋ(t)) dt,

for x ∈ W 1,p s.t. ẋ(t) ∈ V (t) a.a. t
V (t) measurable multifunction with closed convex values
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Assumptions and Optimality Conditions

Minimize

J(x) = `(x(a), x(b)) +

∫ b

a
L(t, x(t), ẋ(t)) dt,

for x ∈ W 1,p s.t. ẋ(t) ∈ V (t) a.a. t
V (t) measurable multifunction with closed convex values
ASSUMPTIONS:

(Controllability) ∃ δ∗ > 0 s.t. for a.a. t, ẋ∗(t) + δ∗B ⊂ V (t)

Function ` : Rd × Rd → R ∪ {+∞} is lower semicontinuous;

∀ (x, v) ∈ Rd × Rd the function t 7→ L(t, x, v) is Lebesgue
measurable;

For a given x∗ ∈ W 1,p there exists ε∗ > 0 such that for some
kL ∈ L2(a, b;R), for a.a. t ∈ [a, b], ∀ x, y ∈ x∗(t) + εB, and ∀
u, v ∈ V (t)

|L(t, x, u) − L(t, y, v)| ≤ kL(t) {‖x − y‖Rd + ‖u − v‖Rd}
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Assumptions and Optimality Conditions

Type of minimizer:
x∗ is a V -local minimizer for J if ∃ ε∗ > 0 s.t.∀ x ∈ W 1,p satisfying
ẋ(t) ∈ V (t) for a.a. t ∈ [a, b] and ‖x − x∗‖∞ < ε∗ J(x) ≥ J(x∗).
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Assumptions and Optimality Conditions

THEOREM: Let x∗ be V -local minimizer under assumptions.
Then ∃ absolutely continuous p : [a, b] → Rd which satisfies the
Euler inclusion:

ṗ(t) ∈ co {w : (w, p(t)) ∈ ∂LL(t, x∗(t), ẋ∗(t))} a.a. t ∈ [a, b] ,

the transversality conditions:

(p(a),−p(b)) ∈ ∂L`(x∗(a), x∗(b))

Weierstrass condition: a.a. t ∈ [a, b], ∀ v ∈ V (t),

L(t, x∗(t), v) ≥ L(t, x∗(t), ẋ∗(t)) + 〈p(t), v − ẋ∗(t)〉 .
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Assumptions and Optimality Conditions

THEOREM: Let x∗ be V -local minimizer under assumptions.
Then ∃ absolutely continuous p : [a, b] → Rd which satisfies the
Euler inclusion:

ṗ(t) ∈ co {w : (w, p(t)) ∈ ∂LL(t, x∗(t), ẋ∗(t))} a.a. t ∈ [a, b] ,

the transversality conditions:

(p(a),−p(b)) ∈ ∂L`(x∗(a), x∗(b))

Weierstrass condition: a.a. t ∈ [a, b], ∀ v ∈ V (t),

L(t, x∗(t), v) ≥ L(t, x∗(t), ẋ∗(t)) + 〈p(t), v − ẋ∗(t)〉 .

Smooth case p(t) = Lv(t, x∗(t), ẋ∗(t)), p′(t) = Lx(t, x∗(t), ẋ∗(t))

Geometric Control Seminar, MSU, April 22, 2020 – p. 8/11



NewMultidirectional MVI

Consider linear mappings A : V → E and ψ : V → R, where V is an
arbitrary convex set.
In particular, we make the following assumptions on the data
f, X,V , A and ψ:

A1: The function f : E→ R ∪ {∞} is lower semicontinuous,
f(x0 + A(v0)) is finite, and f is bounded from below on the set

D0 := [x0 + A(v0), X + A(V)] + δB,

for some δ > 0;

A2: The set X ⊂ E is closed, bounded, and convex;

A3: The sets A(V) and ψ(V) ⊂ R are bounded.
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NewMultidirectional MVI

Kipka and Ledyaev

THEOREM: Let E admits a bump function b( globally Lipschitz and
β-smooth), Assumptions A1 – A3 hold.
Then ∀ ε > 0 and ∀ ρ s.t.

ρ < sup
δ>0

inf
x∈X+δB, v∈V

{
f(x + A(v)) − f(x0 + A(v0)) + ψ(v) − ψ(v0)

}

∃ z ∈
[
x0 + A(v0), X + A(V)

]
+ εB and z∗ ∈ ∂βf(z) s.t.

ρ <
〈
z∗, x − x0 + A(v) − A(v0)

〉
+ ψ(v) − ψ(v0)

∀ x ∈ X and v ∈ V.

More general than existing variants of MVI.
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NewMultidirectional MVI

Proof is based on the use of bump function instead of square of
Hilbert norm in Clarke and Ledyaev 1994
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Optimality Conditions for Nonsmooth Calculus of Variations

Traditional variation of minimizer:

xλ(t) = x∗(t) + λy(t), ẏ(t) = v(t)
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Optimality Conditions for Nonsmooth Calculus of Variations

Use relaxed controls μ(t) instead v(t)

μ(t) =
m∑

i=1

αiδui(t)

αi ≥ 0 satisfy
∑m

i=1 αi = 1
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Optimality Conditions for Nonsmooth Calculus of Variations

Use relaxed controls μ(t) instead v(t)

μ(t) =
m∑

i=1

αiδui(t)

αi ≥ 0 satisfy
∑m

i=1 αi = 1
Then relaxed variation

xλ(t) = x∗(t) + λv + λ

∫ t

a
w(s) ds +

∫ t

a

∫

Rd

uμλ(s; du) ds

Jλ := `(xλ(a), xλ(b)) +

∫ b

a
L(t, xλ(t), ẋ∗(t) + λw(t) + u)μλ(t; du) dt

where μ is a relaxed velocity, μλ := (1 − λ)δu∗(t) + λμ, v ∈ Rd, and
w ∈ L∞(a, b;Rd), u∗(t) = ẋ∗(t)
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Optimality Conditions for Nonsmooth Calculus of Variations

Then relaxed variation

xλ(t) = x∗(t) + λv + λ

∫ t

a
w(s) ds +

∫ t

a

∫

Rd

uμλ(s; du) ds

Jλ := `(xλ(a), xλ(b)) +

∫ b

a
L(t, xλ(t), ẋ∗(t) + λw(t) + u)μλ(t; du) dt

where μ is a relaxed velocity, μλ := (1 − λ)δu∗(t) + λμ, v ∈ Rd, and
w ∈ L∞(a, b;Rd), u∗(t) = ẋ∗(t)

Approximation: Any (xλ, Jλ can be approximated with arbitrary
precision by traditional control u(t)! Controllability is used here for
lower semicontinuous `.
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Optimality Conditions for Nonsmooth Calculus of Variations

Let E denote the Banach space Rd ×Rd ×L2(a, b;Rd)×L2(a, b;Rd),
define a function f : E → R ∪ {+∞} through

f(x, y, u, v) = `(x∗(a)+x, x∗(b)+y)+

∫ b

a
L̃(t, x∗(t)+u(t), ẋ∗(t)+v(t)) dt.

Define linear maps A : V(R, ε) → E and ψ : V(R, ε) → through

A(μ) =

(

0,

∫ b

a

∫

Rd

uμ(s, du) ds,

∫ (∙)

a

∫

Rd

uμ(s, du) ds, 0

)

ψ(μ) =

∫ b

a

∫

Rd

L̃(s, x∗(s), ẋ∗(s) + u)μ(s, du) ds
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Optimality Conditions for Nonsmooth Calculus of Variations

Then

f(x + A(μ)) − f(0 + A(δ0)) + ψ(μ) − ψ(δ0) =

`(xλ(a), xλ(b)) − `(x∗(a), x∗(b)) +

∫ b

a
L̃(t, xλ(t), ẋ∗(t) + +λw(t)) dt+

+ λ

∫ b

a

∫

Rd

L̃(t, x∗(t), ẋ∗(t) + u) μ(t, du) −
∫ b

a
L̃(t, x∗(t), ẋ∗(t)) dt =

= `(xλ(a), xλ(b)) +

∫ b

a

∫

Rd

L̃(t, xλ(t), ẋ∗(t) + λw(t) + u)μλ(t, du) dt−

− J(x∗) − o(λ) = Jλ − J(x∗) − o(λ) ≥ −o(λ).
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Optimality Conditions for Nonsmooth Calculus of Variations

Then

f(x + A(μ)) − f(0 + A(δ0)) + ψ(μ) − ψ(δ0) =

`(xλ(a), xλ(b)) − `(x∗(a), x∗(b)) +

∫ b

a
L̃(t, xλ(t), ẋ∗(t) + +λw(t)) dt+

+ λ

∫ b

a

∫

Rd

L̃(t, x∗(t), ẋ∗(t) + u) μ(t, du) −
∫ b

a
L̃(t, x∗(t), ẋ∗(t)) dt =

= `(xλ(a), xλ(b)) +

∫ b

a

∫

Rd

L̃(t, xλ(t), ẋ∗(t) + λw(t) + u)μλ(t, du) dt−

− J(x∗) − o(λ) = Jλ − J(x∗) − o(λ) ≥ −o(λ).

Thus, assumptions for multidirectional MVI are satisfied with
ρ = −o(λ)
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Optimality Conditions for Nonsmooth Calculus of Variations

Finding subgradients of the functional f we analyze relation
between them and derive optimality conditions by taking limit as
λ ↓ 0.
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Conclusions

Multidirectional Mean Value Inequalities are useful for
developing calculus for nonsmooth functions
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Conclusions

Multidirectional Mean Value Inequalities are useful for
developing calculus for nonsmooth functions

New more general variant of multidirectional MVI was
presented
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Conclusions

Multidirectional Mean value Inequalities are useful for
developing calculus for nonsmooth functions

New more general variant of multidirectional MVI was
presented

Such MVI can be applied for derivation of optimality conditions
for nonsmooth problems of Calculus of Variations
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Conclusions

Robert Kipka and Kipka Junior
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Conclusions
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