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Mean field type control problem. Dynamics

Let
▶ Rd be a phase space for each agent;
▶ f (t, x ,m, u), where t ∈ [0,T ], x ∈ Rd , m is a probability on

Rd , u ∈ U is a control, be a nonlocal velocity field.

Dynamics of distribution of agents satisfies in the distributional
sense the nonlocal continuity equation:

∂

∂t
m(t) + div(f (t, x ,m(t), u(t, x))m(t)) = 0.

In particular, the dynamics of each agent obeys the ODE:

ẋ = f (t, x ,m(t), u(t, x)).



Mean field type control problem.

▶ The agents play cooperatively to minimize the averaged payoff.
▶ The payoff of each agent is equal to

σ(x(T ),m(T )) +

∫ T

0
f0(t, x(t),m(t), u(t, x(t)))dt.



Notation

▶ If (X , ρX ) is a Polish space, then B(X ) denotes the Borel
σ-algebra on X .

▶ P(X ) is the set of Borel probabilities on X .



Push-forward measure

Assume that
▶ (Ω,F), (Ω′,F ′) are measurable spaces,
▶ P is a probability on F ,
▶ ξ : Ω → Ω′ is measurable function.

A probability ξ♯P on F ′ defined by the rule: for E ∈ F ′,

(ξ♯P)(E ) ≜ P(ξ−1(E ))

is called a push-forward measure.



Notation. Space of probabilities

▶ If (X , ρX ) is a Polish space, p ≥ 1, then Pp(X ) is the set of
probabilities on X with the finite p-th moment, i.e.,
m ∈ Pp(X ) iff, for some (equivalently, any) x∗ ∈ X ,

Mp
p(m) ≜

∫
X
ρpX (x , x∗)m(dx) <∞.

▶ Distance on Pp(X ): if m1,m2 ∈ Pp(X ), then

Wp(m1,m2) ≜ inf
[∫

X×X
ρpX (x1,x2)π(dx1dx2) :

π ∈ Π(m1,m2)
]1/p

,

where Π(m1,m2) is the set of probabilities π on X × X such
that, for any measurable E ⊂ X , π(E × X ) = m1(X ),
π(X × E ) = m2(E ).



Notation. State and controls

▶ Space of curves: Γ = C ([0,T ];Rd).
▶ Space of curves in the costate space: Γ∗ ≜ C ([0,T ];Rd ,∗).

▶ Evaluation operator: for γ ∈ Γ,

et(γ) = γ(t).

▶ Space of controls: Up ≜ Lp([0,T ],B([0,T ]), λ;U), where λ
stands for the Lebesgue measure.



Lagrangian approach

▶ (Ω,F ,P) is a standard probability space.
▶ Control process: (X , uL), where X ∈ Lp(Ω,F ,P; Γ),

uL ∈ Lp(Ω,F ,P;Up).
▶ Dynamics:

d

dt
X (t, ω) = f (t,X (t, ω),X (t)♯P, uL(t, ω)).

▶ Initial condition: X (0)♯P = m0.
▶ Payoff:

JL(X , uL) ≜
∫
Ω
σ(X (T , ω),X (T )♯P)P(dω)

+

∫
Ω

∫ T

0
f0(t,X (t, ω),X (t)♯P, uL(t, ω))dtP(dω).



Kantorovich approach

▶ Control process: (η, uK ), where η ∈ Pp(Γ),
uK ∈ Lp(Γ,B(Γ), η;Up).

▶ Feasibility: for η-a.e. γ ∈ Γ,

d

dt
γ(t) = f (t, γ(t), et♯η, uK (t, γ)),

where et(γ) = γ(t), (et♯η)(E ) = η{γ ∈ Γ : γ(t) ∈ E}.
▶ Initial condition: e0♯η = m0.
▶ Payoff:

JK (η, uK ) ≜
∫
Γ
σ(γ(T ), eT ♯η)η(dγ)

+

∫
Γ

∫ T

0
f0(t, γ(t), et♯η, uK (t, γ))dtη(dγ).



Eulerian approach

▶ Control process: (m(·), uE ), where m(t) is a probability on Rd ,
uE : [0,T ]× Rd → U.

▶ Dynamics: m(·) is a distributional solution of the nonlocal
continuity equation:

∂tm(t) + div(vE (t, x)m(t)) = 0,

for vE (t, x) = f (t, x ,m(t), uE (t, x)).
▶ Initial condition: m(0) = m0.
▶ Payoff:

JE (µ, uE ) ≜
∫

Rd

σ(x ,m(T ))m(T , dx)

+

∫ T

0

∫
Rd

f0(t, x ,m(t), uE (t, x))m(t, dx)dt.



Continuity equation

m(·) is a distributional solution of the nonlocal continuity equation:

∂tm(t) + div(v(t, x)m(t)) = 0,

iff, for every φ ∈ C∞
c ((0,T )× Rd),∫ T

0

∫
Rd

[
∂tφ(t, x) +∇xφ(t, x)v(t, x)

]
m(t, x)dt = 0.



Intrinsic derivative

Definition
Let Φ : Pp(Rd) → R. A function δΦ

δm : Pp(Rd)× Rd → R is a flat
derivative iff, for any m′ ∈ Pp(Rd),

lim
s↓0

Φ((1 − s)m + sm′)− Φ(m)

s

=

∫
Rd

δΦ

δm
(m, y)[m′(dy)−m(dy)].

Definition
The function ∇mΦ defined by the rule

∇mΦ(m, y) ≜ ∇y
δΦ

δm
(m, y)

is called an intrinsic derivative of the function Φ.
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s

=
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is called an intrinsic derivative of the function Φ.



Assumptions

▶ p > 1;

▶ U is a closed subset of a separable Banach space;

▶ the functions f , f0 and σ are continuous;

▶ there exists a constant C∞ such that

∥f (t, x ,m, u)∥ ≤ C∞(1 + ∥x∥+Mp(m) + ∥u∥),

|f0(t, x ,m, u)| ≤ C∞(1 + ∥x∥p +Mp
p(m) + ∥u∥p),

|σ(x ,m)| ≤ C∞(1 + ∥x∥p +Mp
p(m));

▶ the functions f and f0 are continuous w.r.t. time variable with
the same modulus of continuity ς(·);

▶ the function f is continuously differentiable w.r.t. x and m; its
derivatives ∇x f and ∇mf are bounded by constants Cx and
Cm respectively;



Assumptions

▶ the function f0 is continuously differentiable w.r.t. x and m;
the derivatives ∇x f0 and ∇mf0 satisfy the following growth
conditions with constants C 0

x , C 0
m:

∥∇x f0(t, x ,m, u)∥q ≤ C 0
x (1 + ∥x∥p +Mp

p(m) + ∥u∥p),

∥∇mf0(t, x ,m, y , u)∥q ≤ C 0
m(1+∥x∥p+∥y∥p+Mp

p(m)+∥u∥p);

▶ the terminal payoff σ is continuously differentiable; the
functions ∇xσ and ∇mσ satisfy the following estimates with
some nonnegative constants Cσx , Cσm:

∥∇xσ(x ,m)∥q ≤ Cσx (1 + ∥x∥p +Mp
p(m)),

∥∇mσ(x ,m, y)∥q ≤ Cσm(1 + ∥x∥p + ∥y∥p +Mp
p(m)).



Lagrangian strong local Lp-minimizer

A Lagrangian control process (X ∗, u∗L) is a strong local
Lp-minimizer at m0 if there exists ε > 0 satisfying the following
condition: for any admissible (X , uL) such that ∥X − X ∗∥Lp ≤ ε,

JL(X
∗, u∗L) ≤ JL(X , uL).



Lagrangian strong local Wp-minimizer

A Lagrangian control process (X ∗, u∗L) is a strong local
Wp-minimizer at m0 if there exists ε > 0 satisfying the following
condition: for every admissible (X , uL) such that
Wp(X ♯P,X ∗♯P) ≤ ε,

JL(X
∗, u∗L) ≤ JL(X , uL).



Pontryagin local Lp-minimizer for the Lagrangian approach

A Lagrangian control process (X ∗, u∗L) is a Pontryagin local
Lp-minimizer at m0 if there exists ε > 0 such that inequality

JL(X
∗, u∗L) ≤ JL(X , uL).

holds true for each admissible (X , uL) satisfying
▶ ∥X − X ∗∥Lp ≤ ε,
▶ (λ⊗ P){(t, ω) ∈ [0,T ]× Ω : u∗(t, ω) ̸= u(t, ω)} ≤ ε.



Pontryagin local Wp-minimizer for the Lagrangian approach

A Lagrangian control process (X ∗, u∗L) is a Pontryagin local
Wp-minimizer at m0 if there exists ε > 0 such that

JL(X
∗, u∗L) ≤ JL(X , uL).

holds true for each admissible (X , uL) satisfying
▶ Wp(X ♯P,X ∗♯P) ≤ ε,
▶ (λ⊗ P){(t, ω) ∈ [0,T ]× Ω : u∗(t, ω) ̸= u(t, ω)} ≤ ε.



Local minima within Lagrangian approach

▶ Every strong minimizer is a Pontryagin one.
▶ Every Wp minimizer is a Lp-minimizer.

The Pontryagin Lp-minimizer is the weakest minimizer!



Pontryagin maximum principle for the Lagrangian approach



Regular points
A point t ∈ [0,T ] is called regular for the process (X , u) if
▶ ∥u(t)∥Lp <∞,

▶

lim
h↓0

E

∥∥∥∥∥1
h

∫ t+h

t
f (τ,X (τ),X (τ)♯P, u(τ))dτ

− f (t,X (t),X (t)♯P, u(t))

∥∥∥∥∥
p

= 0,

▶

lim
h↓0

E

∣∣∣∣∣1h
∫ t+h

t
f0(τ,X (τ),X (τ)♯P, u(τ))dτ

− f0(t,X (t),X (t)♯P, u(t))

∣∣∣∣∣ = 0.



Regular points

Almost every t ∈ [0,T ] are regular.



Pontryagin function for the Lagrangian PMP

▶ local Pontryagin function: for t ∈ [0,T ], x ∈ Rd ,
m ∈ Pp(Rd), ψ ∈ Rd ,∗, u ∈ U,

H(t, x ,m, ψ, u) ≜ ψf (t, x ,m, u)− f0(t, x ,m, u);

▶ global Pontryagin function: for t ∈ [0,T ],
X ∈ Lp(Ω,F ,P;Rd), Ψ ∈ Lq(Ω,F ,P;Rd ,∗),
u ∈ Lp(Ω,F ,P;U),

H(t,X ,Ψ, u) ≜ EH(t,X ,X ♯P,Ψ, u).



Pontryagin maximum principle in the Lagrangian form

Let (Ω,F ,P) be a standard probability space, a Lagrangian process
(X ∗, u∗) be a Pontryagin local Lp-minimizer. Then there exists a
function Ψ ∈ Lq(Ω,F ,P; Γ∗) such that
▶ the costate equation,
▶ the transversality condition,
▶ the maximization conditions

hold true.



Costate equation

For P-a.e. ω ∈ Ω, Ψ(·, ω) solves

d

dt
Ψ(t, ω)

= −Ψ(t, ω)∇x f (t,X
∗(t, ω),X ∗(t)♯P, u∗(t, ω))

+∇x f0(t,X
∗(t, ω),X ∗(t)♯P, u∗(t))

−
∫
Ω
Ψ(t, ω′)∇mf (t,X

∗(t, ω′),X ∗(t)♯P,

X ∗(t, ω), u∗(t, ω′))P(dω′)

+

∫
Ω
∇mf0(t,X

∗(t, ω′),X ∗(t)♯P,

X ∗(t, ω), u∗(t, ω′))P(dω′).



Transversality condition

Ψ(T , ω)

= −∇xσ(X
∗(T , ω),X ∗(T )♯P)

−
∫
Ω
∇mσ(X

∗(T , ω′),X ∗(T )♯P,X ∗(T , ω))P(dω′)

P-a.s.



Maximization of the Hamiltonian condition

▶ global form: for each regular point t ∈ [0,T ],

H(s,X ∗(s),Ψ(s), u∗(s)) = max
ν∈Lp(Ω,F ,P;U)

H(s,X ∗(s),Ψ(s), ν)

▶ local form: for each regular point t ∈ [0,T ],

H(s,X ∗(s),X ∗(s)♯P,Ψ(s), u∗(s))

= max
u∈U

H(s,X ∗(s),X ∗(s)♯P,Ψ(s), u) P-a.s.



Hamiltonian form of the costate equation

d

dt
X ∗(t) = ∇ΨH(t,X ∗(t),Ψ(t), u∗(t)),

d

dt
Ψ(t) = −∇XH(t,X ∗(t),Ψ(t), u∗(t)),

X (0) = X0,

Ψ(T ) = −∇XΣ(X
∗(T )).

Here,
▶ ∇XH, ∇ΨH stands for the derivatives w.r.t.

X ∈ Lp(Ω,F ,P;Rd) and Ψ ∈ Lq(Ω,F ,P;Rd),
▶ Σ(X ) ≜ Eσ(X ,X ♯P).



Method of proof: spike variation

Let ν ∈ Lp(Ω,F ,P;U) and let s ∈ [0,T ] be a regular point.

Perturbated control:

uhν (t, ω) ≜


u∗(t, ω), t ∈ [0, s),
ν(ω), t ∈ [s, s + h),
u∗(t, ω) t ∈ [s + h,T ].

Perturbated motion: Zh
ν ∈ Lp(Ω,F ,P; Γ) satisfies

d

dt
Zh
ν (t, ω) = f (t,Zh

ν (t, ω),Z
h
ν (t)♯P, u

h
ν (t, ω)),

Zh
ν (0, ω) = X0(ω).



Sequence of perturbated controls

There exists a sequence {hn}∞n=1 such that
1. {Zhn

ν (t, ω)}∞n=1 converges to X ∗(t, ω) for λ⊗ P-a.e.
(t, ω) ∈ [s,T ]× Ω;

2. {Zhn
ν (T , ω)}∞n=1 converges to X ∗(T , ω) for P-a.e. ω ∈ Ω.



Variational equation. Notation

▶ derivative w.r.t. x :

f ∗x (t, ω) ≜ ∇x f (t,X
∗(t, ω),X ∗(t)♯P, u∗(t, ω));

▶ derivative w.r.t. m:

f ∗m(t, ω, ω
′) ≜ ∇mf (t,X

∗(t, ω),X ∗(t)♯P,X ∗(t, ω′), u∗(t, ω));

▶ inner product:

⟨f ∗m,Yν⟩(t, ω) ≜
∫
Ω
f ∗m(t, ω, ω

′)Yν(t, ω
′)P(dω′);

▶ jump:

∆s
ν f

∗(ω) ≜ f (s,X ∗(s, ω),X ∗(s)♯P, ν(ω))

− f (s,X ∗(s, ω),X ∗(s)♯P, u∗(s, ω)),



Variational equation

d

dt
Yν(t, ω) = f ∗x (t, ω) · Yν(t, ω) + ⟨f ∗m,Yν⟩(τ, ω),

Yν(s, ω) = ∆s
ν f

∗(ω).

Proposition (derivative of perturbated motions).

1
hn

∥Zhn
ν (t)− X ∗(t)− hnYν(t)∥Lp → 0 as n → ∞

uniformly for t ∈ (s,T ].



Variational equation

d

dt
Yν(t, ω) = f ∗x (t, ω) · Yν(t, ω) + ⟨f ∗m,Yν⟩(τ, ω),

Yν(s, ω) = ∆s
ν f

∗(ω).

Proposition (derivative of perturbated motions).

1
hn

∥Zhn
ν (t)− X ∗(t)− hnYν(t)∥Lp → 0 as n → ∞

uniformly for t ∈ (s,T ].



Variation of running cost. Notation

▶ derivative w.r.t. x :

f ∗0,x(t, ω) ≜ ∇x f0(t,X
∗(t, ω),X ∗(t)♯P, u∗(t, ω)),

▶ derivative w.r.t. m:

f ∗0,m(t, ω, ω
′) ≜ ∇mf0(t,X

∗(t, ω),X ∗(t)♯P,X ∗(t, ω′), u∗(t, ω)),

▶ inner product:

⟨f ∗0,m,Yν⟩(t, ω) ≜
∫
Ω
f ∗0,m(t, ω, ω

′)Yν(t, ω
′)P(dω′);

▶ jump:

∆s
ν f

∗
0 (ω) ≜ f (s,X ∗(s, ω),X ∗(s)♯P, ν(ω))

− f0(s,X
∗(s, ω),X ∗(s)♯P, u∗(s, ω)).



Variation of the running cost

lim
n→∞

1
hn

[ ∫ T

0
Ef0(t,Z

hn
ν (t),Zhn

ν (t)♯P, uhnν (t))dt

−
∫ T

0
Ef0(t,X

∗(t),X ∗(t)♯P, u∗(t))dt

]
= E∆s

ν f
∗
0 +

∫ T

s
E[f ∗0,x(t)Yν(t) + ⟨f ∗0,m,Yν⟩(t)]dt.



Variation of the terminal cost. Notation

▶ derivative w.r.t. x :

σ∗x(ω) ≜ ∇xσ(X
∗(T , ω),X ∗(T )♯P);

▶ derivative w.r.t. x :

σ∗m(ω, ω
′) ≜ ∇mσ(X

∗(T , ω),X ∗(T )♯P,X ∗(T , ω′));

▶ inner product:

⟨σ∗m,Yν⟩(ω) ≜
∫
Ω
σ∗m(ω, ω

′)Yν(ω
′)P(dω′).



Variation of the terminal cost

lim
n→∞

1
hn

E|σ(Zhn
ν (T ),Zhn

ν (T )♯P)− σ(X ∗(T ),X ∗(T )♯P)

− hn[σ
∗
x + ⟨σ∗m,Yν⟩]| = 0.



Local minimizers and PMP for the Kantorovich approach



Kantorovich approach

▶ Control process: (η, uK ), where η ∈ Pp(Γ),
uK ∈ Lp(Γ,B(Γ), η;Up).

▶ Feasibility: for η-a.e. γ ∈ Γ,

d

dt
γ(t) = f (t, γ(t), et♯η, uK (t, γ)),

where et(γ) = γ(t), (et♯η)(E ) = η{γ ∈ Γ : γ(t) ∈ E}.
▶ Initial condition: e0♯η = m0.
▶ Payoff:

JK (η, uK ) ≜
∫
Γ
σ(γ(T ), eT ♯η)η(dγ)

+

∫
Γ

∫ T

0
f0(t, γ(t), et♯η, uK (t, γ))dtη(dγ).



Kantorovich local minimizer

A Kantorovich control process (η∗, u∗K ) is a strong local minimizer
at m0 if there exists ε > 0 such that: for any Kantorovich process
(η, uK ) satisfying Wp(et♯η, et♯η

∗) ≤ ε,

JK (η
∗, u∗K ) ≤ JK (η, uK ).



Kantorovich and Lagrangian processes

Let
▶ (η, uK ) be a Kantorovich control process;
▶ (Ω,F ,P) be a standard probability space.

A Lagrangian control process (X , uL) defined on (Ω,F ,P) realizes
(η, uK ) if
▶ η = X (·)♯P,
▶ uL(t, ω) = uK (t,X (·, ω)) for P-a.e. ω ∈ Ω and a.e. t ∈ [0,T ].



Kantorovich minimum implies Lagrangian minimum

Theorem
Assume that (η∗, u∗K ) is a strong local minimizer in the framework
of the Kantorovich approach at m0 = et♯η

∗. Let (X ∗, u∗L) be a
Lagrangian process that realizes the Kantorovich process (η∗, u∗K ).
Then, (X ∗, u∗L) is a strong local minimizer at m0 in the framework
of the Lagrangian approach.



Kantorovich minimum implies Lagrangian minimum

Theorem
Let (η, uK ) be a Kantorovich control process. Assume also that the
standard probability space (Ω,F ,P) is such that either the
probability P has no atoms or (Ω,F ,P) = (Γ,B(Γ), η).
Then, there exists a Lagrangian process (X , uL) defined on
(Ω,F ,P) that realizes (η, uK ).
Furthermore, if (Ω,F ,P) = (Γ,B(Γ), η), one can put X = idΩ and
uK = uL.



Pontryagin maximum principle in the Kantorovich form

Let (η∗, u∗K ) be a strong local minimizer in the framework of the
Kantorovich approach.
Then, there exists a function ψ ∈ Lq(Γ,B(Γ), η∗; Γ∗) such that
▶ the costate equation,
▶ transversality condition,
▶ maximization conditions

hold true.



Costate equation

For η∗-a.e. γ ∈ Γ, ψ(·, γ) solves

d

dt
ψ(t, γ)

= −ψ(t, γ)∇x f (t, γ(t), et♯η
∗, u∗K (t, γ))

+∇x f0(t, γ(t), et♯η
∗, u∗K (t, γ))

−
∫
Γ
ψ(t, γ′)∇mf (t, γ

′(t), et♯η
∗, γ(t), u∗K (t, γ

′))η∗(dγ′)

+

∫
Γ
∇mf0(t, γ

′(t), et♯η
∗, γ(t), u∗K (t, γ

′))η∗(dγ′).



Transversality condition

ψ(T , γ)♯η∗ = −∇xσ(γ(T ), eT ♯η
∗)

−
∫
Γ
∇mσ(γ

′(t), eT ♯η
∗, γ(T ))η∗(dγ′)

for η∗-a.e. γ ∈ Γ.



Maximization of the Hamiltonian condition

H(s, γ(s), es♯η
∗,ψ(s, γ), u∗(s, γ))

= max
u∈U

H(s, γ(s), es♯η
∗, ψ(s, γ), u)

for a.e. s ∈ [0,T ] and η∗-a.e. γ ∈ Γ.



Local minimizers and PMP for the Eulerian approach



Eulerian approach

▶ Control process: (m(·), uE ), where m(t) is a probability on Rd ,
uE : [0,T ]× Rd → U.

▶ Dynamics: m(·) is a distributional solution of the nonlocal
continuity equation:

∂tm(t) + div(vE (t, x)m(t)) = 0,

for vE (t, x) = f (t, x ,m(t), uE (t, x)).
▶ Initial condition: m(0) = m0.
▶ Payoff:

JE (µ, uE ) ≜
∫

Rd

σ(x ,m(T ))m(T , dx)

+

∫ T

0

∫
Rd

f0(t, x ,m(t), uE (t, x))m(t, dx)dt.



Convexity condition for the Eulerian case

▶ the set U is a closed convex subset of a Banach space;

▶ the mapping U ∋ u 7→ f (t, x ,m, u) is affine in u, i.e., for
t ∈ [0,T ], x ∈ Rd , m ∈ Pp(Rd), u1, u2 ∈ U, α ∈ [0, 1],

f (t, x ,m, αu1 + (1 − α)u2)

= αf (t, x ,m, u1) + (1 − α)f (t, x ,m, u2);

▶ the function f0 is convex in u, i.e., for every t ∈ [0,T ],
x ∈ Rd , m ∈ Pp(Rd), u1, u2 ∈ U, α ∈ [0, 1],

f0(t, x ,m, αu1 + (1 − α)u2)

≤ αf0(t, x ,m, u1) + (1 − α)f0(t, x ,m, u2).



Eulerian local minimizer

A Eulerian control process (m∗(·), u∗E ) is a strong local minimizer at
m0 if there exists ε > 0 such that: for any Eulerian process
(m(·), uE ) satisfying Wp(m(t),m∗(t)) ≤ ε,

JE (m
∗(·), u∗E ) ≤ JE (m(·), uE ).



Eulerian and Lagrangian processes

Let (m(·), uE ) be an Eulerian control process. A Lagrangian control
process (X , uL) defined on a standard probability space (Ω,F ,P)
realizes (m∗(·), uE ) provided that
▶ m(t) = X (t)♯P for every t ∈ [0,T ];
▶ uL(t, ω) = uE (t,X (t, ω)) for a.e. t ∈ [0,T ] and P-a.e. ω ∈ Ω.



Eulerian minimizer implies Lagrangian one

Theorem
Let (m∗(·), u∗E ) be a strong local minimizer in the Euler framework
and let (X ∗, u∗L) be a Lagrangian process defined on some standard
probability space (Ω,F ,P) that realizes (m∗(·), u∗E ).
Then, (X ∗, u∗L) is a strong local minimizer at m0 within the
Lagrangian framework.



Eulerian minimizer implies Lagrangian one

Theorem
Assume that (m(·), uE ) is an Eulerian control process.
Furthermore, let a standard probability space (Ω,F ,P) be such
that at least one the following conditions satisfies:

▶ the probability P has no atoms,

▶ (Ω,F ,P) = (Γ,B(Γ), η), and η is concentrated on solutions of

d

dt
γ(t) = f (t, γ(t),m(t), uE (t, γ(t)))

and m(t) = et♯η.

Then, there exists a Lagrangian process (X , uL) defined on
(Ω,F ,P) that realizes (m(·), uE ). Furthermore, in the second case,
we can put X = idΩ and uE (t, γ(t)) = uL(t, γ).



Pontryagin maximum principle for the Eulerian framework

Let an Eulerian control process (m∗(·), u∗E ) be a strong local
minimizer at m0. Then, there exists a flow of probabilities
ν∗(·) : [0,T ] → Pp∧q(Rd × Rd ,∗) satisfying
▶ consistency condition;
▶ continuity equation playing both the roles of state and costate

equations;
▶ transversality condition;
▶ maximization of the Hamiltonian condition.



Consistency condition

p1 ♯ν∗(t) = m∗(t) ∀t ∈ [0,T ];

Here pi (x1, x2) ≜ xi .



Joint state and costate continuity equation

ν∗(·) is a distributional solution of the continuity equation

∂tν
∗ + div(j(t, x , ψ)ν∗) = 0,

where the vector field j(t, x , ψ) = (jx(t, x , ψ),jψ(t, x , ψ)) is
given by

jx(t, x , ψ) ≜ f (t, x ,m∗(t), u∗E (t, x)),

jψ(t, x , ψ) ≜

−ψ∇x f (t, x ,m
∗(t), u∗E (t, x))

+∇x f0(t, x ,m
∗(t), u∗E (t, x))

−
∫

Rd×Rd,∗
ζ∇mf (t, y ,m

∗(t), x , u∗E (t, y))ν
∗(t, d(y , ζ))

+

∫
Rd

∇mf0(t, y ,m
∗(t), x , u∗E (t, y))m

∗(t, dy);



Continuity equation

ν(·) is a distributional solution of the nonlocal continuity equation:

∂tν(t) + div(j(t, x , ψ)ν(t)) = 0,

iff, for every φ ∈ C∞
c ((0,T )× Rd × Rd ,∗),∫ T

0

∫
Rd×Rd,∗

[
∂tφ(t, x , ψ) +∇xφ(t, x , ψ)jx(t, x , ψ)

+ jψ(t, x , ψ)∇ψφ(t, x , ψ)
]
ν(t, d(x , ψ))dt = 0.



Transversality condition

p2 ♯ν∗(T ) =

[
−∇xσ(·,m∗(T ))

−
∫

Rd

∇mσ(y ,m
∗(T ), ·)m∗(T , dy)

]
♯m∗(T ).

Here pi (x1, x2) ≜ xi .



Maximization condition

H(s, x ,m∗(s), ψ, u∗E (s, x)) = max
u∈U

H(s, x ,m∗(s), ψ, u)

for almost every s ∈ [0,T ] and ν∗(s)-a.e. (x , ψ) ∈ Rd × Rd ,∗.



Costate equation in the Hamiltonian form

▶ Hamiltonian for the Eulerian framework:

H(t, ν, u) ≜
∫

Rd×Rd,∗
H(t, x , p1 ♯ν, ψ, u)ν(d(x , ψ)).

▶ Unit symplectic matrix: J(ζ, y) ≜ (y ,−ζ).
▶ Averaged terminal payoff:

S(m) ≜
∫

Rd

σ(x ,m)m(dx).

State+costate equation:

∂tν
∗ + div(J∇νH(t, ν∗(t), x , ψ, u∗E (t, x))ν

∗) = 0,

p1 ♯ν∗(0) = m0,

p2 ♯ν∗(T ) = −∇mS(p1 ♯ν∗(T ), ·)♯(p1 ♯ν∗(T )).



Example. Mean field type linear-quadratic regulator



Dynamics and payoffs

Dynamics of each agent:

d

dt
X (t, ω) = A(t)X (t, ω) + B(t)u(t, ω),

Total payoff:

1
2

E

(∫ T

0
[XT (t)Qx(t)X (t) + uT (t)R(t)u(t)]dt

+ XT (T )Kx(t)X (T )

)
+

1
2

∫ T

0
E[(X (t)− EX (t))TQm(t)(X (t)− EX (t))]dt

+
1
2

E[(X (T )− EX (T ))TKm(X (T )− EX (T ))].



Optimal control

u∗(t, ω) = −R−1(t)BT (t)
[
P1(t)(X

∗(t,ω)− EX ∗(t))

+ P2(t)EX
∗(t)

]
,



Ricatti equation for P1

d

dt
P1(t) = −P1(t)A(t)

− AT (t)P1(t)

+ P1(t)B(t)R
−1(t)B(t)P1(t)

− (Qx(t) + Qm(t));

boundary condition:

P1(T ) = Kx + Km,



Ricatti equation for P2

d

dt
P2(t) = −P2(t)A(t)− AT (t)P2(t)

+ P2(t)B(t)R
−1(t)B(t)P2(t)− Qx(t);

boundary condition:
P2(T ) = Kx .



Thank you for your attention!


