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Mean field type control problem. Dynamics

Let
» RY be a phase space for each agent;
> f(t,x,m,u), where t € [0, T], x € RY, m is a probability on
RY, u € U is a control, be a nonlocal velocity field.

Dynamics of distribution of agents satisfies in the distributional
sense the nonlocal continuity equation:

0 .
am(t) + div(f(t, x, m(t), u(t,x))m(t)) = 0.

In particular, the dynamics of each agent obeys the ODE:

x = f(t,x, m(t), u(t, x)).



Mean field type control problem.

» The agents play cooperatively to minimize the averaged payoff.
» The payoff of each agent is equal to

-
a(x(T),m(T))+/0 fo(t, x(t), m(t), u(t, x(t)))dt.



Notation

» If (X, px) is a Polish space, then B(X) denotes the Borel
o-algebra on X.

» P(X) is the set of Borel probabilities on X.



Push-forward measure

Assume that
> (Q,F), (,F') are measurable spaces,
> P is a probability on F,
> ¢:Q — Q' is measurable function.

A probability £4P on F’ defined by the rule: for E € F,

(€4P)(E) £ P(¢7(E))

is called a push-forward measure.



Notation. Space of probabilities

» If (X, px) is a Polish space, p > 1, then PP(X) is the set of
probabilities on X with the finite p-th moment, i.e.,
m € PP(X) iff, for some (equivalently, any) x, € X,

ME(m) £ /X S (X, x)m(dx) < oo.

» Distance on PP(X): if my, my € PP(X), then
Wy (m1, mo) £ inf{/ P (x1,0)m(dxidxo) :
XxX
1/
7w € M(my, my) p,
where M(my, my) is the set of probabilities 7 on X x X such

that, for any measurable £ C X, m(E x X) = mi(X),
(X X E) = my(E).



Notation. State and controls

> Space of curves: I = C([0, T];RY).
> Space of curves in the costate space: * £ C([0, T]; R%*).
» Evaluation operator: for v €T,

» Space of controls: UP = LP([0, T], B([0, T]), \; U), where A
stands for the Lebesgue measure.



Lagrangian approach

» (Q,F,P) is a standard probability space.

» Control process: (X, ur), where X € LP(Q, F,P;T),
up € LP(Q, F,P;UP).

» Dynamics:
%X(t,w) = f(t, X(t,w), X(t)iP, u(t,w)).

» Initial condition: X(0)tP = myq.
> Payoff:

J(X,u) 2 / o(X(T,w), X(T)tP)P(dw)

Q
;
+/Q/0 fo(t, X(t,w), X(t)4P, ur(t, w))dtP(dw).



Kantorovich approach

» Control process: (1, uk), where n € PP(I),
uk € LP(T,B(T), n; UP).
» Feasibility: for n-a.e. vy €T,
da
dt’
where e:(7) = 7(t), (e:1n)(E) = n{y € T :1(t) € E}.
» Initial condition: eyfin = my.
> Payoff:

(t) = f(t’ ’Y(t)’ etﬁnv UK(t’rY))a

I, ux) 2 /r o(AT). ertn)n(dn)

T
+/r/o fo(t, v(t), etin, uk (t,~))dtn(dv).



Eulerian approach

» Control process: (m(-), ug), where m(t) is a probability on R,
ug 1[0, T] x RY — U.

» Dynamics: m(-) is a distributional solution of the nonlocal
continuity equation:
O¢m(t) + div(ve(t,x)m(t)) =0,
for ve(t, x) = f(t,x, m(t), ug(t, x)).
» Initial condition: m(0) = mq.
> Payoff:

Je(p, ug) 2 /Rd o(x,m(T))m(T,dx)

+/0T/Rdﬁ)(t,><7m(t),uE(tjx))m(t,dX)dt.



Continuity equation

m(-) is a distributional solution of the nonlocal continuity equation:
drm(t) + div(v(t, x)m(t)) =0,

iff, for every ¢ € C°((0, T) x R9),

.
/0 /Rd [0r(t, x) + Vip(t, x)v(t, x)| m(t, x)dt = 0.



Intrinsic derivative

Definition
Let & : PP(RY) — R. A function g% - PP(RY) x R — R is a flat
derivative iff, for any m’ € PP(RY),

IimdD((l —s)ym+sm’) — &(m)
s}0 S

= /R @(m,y)[m'(dy) — m(dy)].

a0m




Intrinsic derivative

Definition
Let & : PP(RY) — R. A function g% - PP(RY) x R — R is a flat
derivative iff, for any m’ € PP(RY),

“mdD((l —s)m+sm’) — d(m)

s}0 S

:/ gq)(m y)[m'(dy) — m(dy)].
R

Definition
The function V,,® defined by the rule

Vn®(m,y) £V, 5 (m.)

is called an intrinsic derivative of the function ®.



Assumptions

vV vyYyy

p>1
U is a closed subset of a separable Banach space;
the functions f, fy and o are continuous;

there exists a constant C,, such that
[£(t,x, m, u)[| < Coo(L 4+ [|x[| + Mp(m) + [|ul]),

[fo(t, x, m, u)| < Coo(L+ [|x[|P + ME(m) + ||ul|?),
o(x, m)| < Coo(1+ [|x][|P + MP(m));
the functions f and fy are continuous w.r.t. time variable with
the same modulus of continuity ¢(-);

the function f is continuously differentiable w.r.t. x and m; its
derivatives V,f and V,,f are bounded by constants C, and
Cm respectively;



Assumptions

> the function f; is continuously differentiable w.r.t. x and m;
the derivatives V,fy and V ,fy satisfy the following growth
conditions with constants C?, C9:

IV xfo(t,x, m,u)||9 < CS(l + [[x[IP + MB(m) + [[u]P),
IV mfo(t, x, m,y, u)|9 < C(L+|x]|P+ly[[P+MBE(m)+]|u||P);

> the terminal payoff o is continuously differentiable; the
functions Vo and V0 satisfy the following estimates with
some nonnegative constants CJ, C7:

Vxa(x, m)[[9 < CZ (1 + [[x[|P + ME(m)),

IV mo (x, m, y)[|9 < CR(1+ (I[P + [ly[[” + ME(m)).



Lagrangian strong local LP-minimizer

A Lagrangian control process (X*, u}) is a strong local
LP-minimizer at mq if there exists £ > 0 satisfying the following
condition: for any admissible (X, u;) such that || X — X*||;» <&,

JL(X*, Ut) S JL(X, UL).



Lagrangian strong local Wy-minimizer

A Lagrangian control process (X*, u}) is a strong local
W,-minimizer at mq if there exists ¢ > 0 satisfying the following
condition: for every admissible (X, u;) such that

Wo(XHP, X*iP) < ¢,

JL(X*, Ut) S JL(X, UL).



Pontryagin local LP-minimizer for the Lagrangian approach

A Lagrangian control process (X*, u}) is a Pontryagin local
LP-minimizer at myg if there exists € > 0 such that inequality

JL(X*, u}f) < JL(X, UL).

holds true for each admissible (X, u;) satisfying
> || X — X*||r <¢,
> ARP){(t,w) €[0, T] x Q: v*(t,w) # u(t,w)} <e.



Pontryagin local W,-minimizer for the Lagrangian approach

A Lagrangian control process (X*, u}) is a Pontryagin local
W,-minimizer at mg if there exists € > 0 such that

JL(X*, u}f) < JL(X, UL).

holds true for each admissible (X, u;) satisfying
> W,(XEP, X*4P) < ¢,
> ARP){(t,w) €[0, T] x Q: v*(t,w) # u(t,w)} <e.



Local minima within Lagrangian approach

» Every strong minimizer is a Pontryagin one.

» Every W, minimizer is a LP-minimizer.

The Pontryagin LP-minimizer is the weakest minimizer!



Pontryagin maximum principle for the Lagrangian approach



Regular points
A point t € [0, T] is called regular for the process (X, u) if
> fu(t)llr < o0,

>
' 1 t+h
ime| 7 /t F(r, X(7), X(7)tP, u(r))d7
p
— f(t, X(t), X(£)4P, u(t))|| =0,
>
t+h
IlifaE :’/t fo(m, X(7), X(7)4P, u(1))dT
— fo(t, X(t), X(t)4P, u(t))| = 0.




Regular points

Almost every t € [0, T] are regular.



Pontryagin function for the Lagrangian PMP

» local Pontryagin function: for t € [0, T], x € RY,
m € PP(RY), v e R%*, u e U,

H(t7X7 m7 ¢7 u) é wf(t7 X7 m? u) - fb(t7 X? m7 u)’

» global Pontryagin function: for t € [0, T],
X € LP(Q, F,P;RY), V¥ € L9(Q, F,P;R%*),
uelP(Q,F,P;U),

H(t, X, W, u) 2 EH(t, X, XtP, ¥, u).



Pontryagin maximum principle in the Lagrangian form

Let (22, F,P) be a standard probability space, a Lagrangian process
(X*, u*) be a Pontryagin local LP-minimizer. Then there exists a
function WV € L9(Q, F,P; ") such that

» the costate equation,

» the transversality condition,

> the maximization conditions
hold true.



Costate equation

For P-a.e. w € Q, V(-,w) solves

d
—V

= —W(t,w)Vxf(t, X*(t,w), X ()P, u™(t,w))
+ Vifo(t, X*(t,w), X* ()P, u™(t))

—/\Il(t,w’)me(t,X*(t,w'),X*(t)ﬁP,
Q
X*(t,w), u*(t,w"))P(dw’)
+ / Vot X*(£,), X" (£)£P,
Q
X*(£,w), u* (t,w'))P(do).



Transversality condition

V(T,w)
= —V,ao(X*(T,w), X*(T)tP)

- /Q Vmo(X*(T,w"), X*(T)4P, X*(T,w))P(dw’)



Maximization of the Hamiltonian condition

» global form: for each regular point t € [0, T],

H(s, X*(s),V(s),u"(s)) = VELp(rpl?}(P;U) H(s, X*(s), ¥(s),v)

» local form: for each regular point t € [0, T],

H(s, X*(s),X*(s)tP, W(s), u"(s))

u
= max H(s, X*(s), X*(s)tP,¥(s), u) P-as.



Hamiltonian form of the costate equation

%x*(t) = VuH(t, X*(t), W(t), u*(1)),

9 (6) = 9 XH(E X0, V(0,4 (0),
X(0) = Xo,

V(T) = =VxXZ(X*(T)).

Here,
» VxH, VyH stands for the derivatives w.r.t.
X € LP(Q, F,P;RY) and ¥ € L9(Q, F,P;RY),

> S(X) £ Eo(X, X{P).



Method of proof: spike variation

Let v € LP(QQ, F,P; U) and let s € [0, T] be a regular point.

Perturbated control:

u*(t,w), te[0,s),
), t€[s,s+h),
u*(t,w) te[s+hT]

Perturbated motion: Z € LP(Q, F,P;T) satisfies

© Z0(t,w) = £t Z0(t,0), Z2(E)2P, (1, )),
Z0(0,w) = Xo(w).



Sequence of perturbated controls

There exists a sequence {h,}7°; such that

1. {Zhn(t,w)}°2, converges to X*(t,w) for A @ P-a.e.
(t,w) € [s, T] x €,

2. {ZM(T,w)}, converges to X*(T,w) for P-a.e. w € Q.



Variational equation. Notation
» derivative w.r.t. x:
£E(t,w) 2 Vi f(t, X*(t,w), X* ()P, u*(t,w));
» derivative w.r.t. m:
fr(t,w,w') 2 Vnf(t, X*(t,w), X*(t)iP, X*(t, ), u*(t,w));

» inner product:

(fr, Yu)(t,w) é/Q1",>,k,(t,w,w’)Y,,(t,w')P(dw');

> jump:
NS (w) = f(s, X*(s,w), X*(s)1P, v(w))
— f(s, X*(s,w), X*(s)tP, u*(s,w)),



Variational equation



Variational equation

Proposition (derivative of perturbated motions).
1 h *
h—HZy”(t) — X*(t) — hpYu(t)||r — 0as n— oo
n

uniformly for t € (s, T].



Variation of running cost. Notation
» derivative w.r.t. x:
for(t,w) = Vifo(t, X*(t,w), X*(£)EP, u™ (t,w)),
» derivative w.r.t. m:
fo m(t,w,w') & Vinfo(t, X*(t,w), X*(£)§P, X*(t, ), u*(t,w)),

» inner product:
(s Yo (£,0) 2 / (£, 0,0) Yo (£, )P(d);
Q

> jump:

A f7 (w) = (s, X"(s,w), X* ()P, v(w))
— fos, X*(s,w), X* ()P, u* (s, w)).



Variation of the running cost

1 T
im [ / Efy(t, ZM(£).ZM (£8P, uf (1)) dt
0

n—o0 n

‘/ "B (X (6), X" (2P, u* (1)t
0

)
—EASE + / E[f (6 Yolt) + (Fms Yo)(£)] .



Variation of the terminal cost. Notation

» derivative w.r.t. x:

oi(w) & Vo (X*(T,w), X*(T)P);

» derivative w.r.t. x:
Ufn(wa w/) é va'(X*( T? W), X*(T)jjpa X*( Ta w/));

» inner product:

(o Vih(w) & /Q o (0,0) Yo (o )P(dw).



Variation of the terminal cost

lim —E|a(Zh( T), ZM(T)tP) — o(X*(T), X*(T)tP)

n—>oo n
= hnlo + {om, Vo)l = 0.



Local minimizers and PMP for the Kantorovich approach



Kantorovich approach

» Control process: (1, uk), where n € PP(I),
uk € LP(T,B(T), n; UP).
» Feasibility: for n-a.e. vy €T,
da
dt’
where e:(7) = 7(t), (e:1n)(E) = n{y € T :1(t) € E}.
» Initial condition: eyfin = my.
> Payoff:

(t) = f(t’ ’Y(t)’ etﬁnv UK(t’rY))a

I, ux) 2 /r o(AT). ertn)n(dn)

T
+/r/o fo(t, v(t), etin, uk (t,~))dtn(dv).



Kantorovich local minimizer

A Kantorovich control process (1*, uj) is a strong local minimizer
at mg if there exists € > 0 such that: for any Kantorovich process

(n, uk) satisfying Wp(e:lin, e:in*) < e,

Ik(n", uk) < Ik(n, uk).



Kantorovich and Lagrangian processes

Let
» (1, ux) be a Kantorovich control process;
> (Q,F,P) be a standard probability space.

A Lagrangian control process (X, u;) defined on (2, F, P) realizes
(n, uk) if

> n=X()tP,

> u(t,w) = uk(t,X(-,w)) for P-a.e. w e Qand ae. t €0, T].



Kantorovich minimum implies Lagrangian minimum

Theorem

Assume that (n*, uj,) is a strong local minimizer in the framework
of the Kantorovich approach at mg = e:fin*. Let (X*,u}) be a
Lagrangian process that realizes the Kantorovich process (n*, uj).

Then, (X*, u}) is a strong local minimizer at mg in the framework
of the Lagrangian approach.



Kantorovich minimum implies Lagrangian minimum

Theorem

Let (n, uk) be a Kantorovich control process. Assume also that the
standard probability space (2, F,P) is such that either the
probability P has no atoms or (Q, F,P) = (I', B(I'), n).

Then, there exists a Lagrangian process (X, u;) defined on

(Q, F,P) that realizes (n, uk).

Furthermore, if (Q, F,P) = (I',B(T"),n), one can put X = idq and
uk = uy.



Pontryagin maximum principle in the Kantorovich form

Let (1%, uj;) be a strong local minimizer in the framework of the
Kantorovich approach.
Then, there exists a function v € LI(I", B(I'), n*; ['*) such that

» the costate equation,

» transversality condition,

» maximization conditions
hold true.



Costate equation

For n*-a.e. v €T, ¢(:,7) solves

d
aw(tv 7)

= _w(tv ’Y)fo(ta ’V(t)7 etﬁn*a Uf((t, '7))
+ Vifo(t, (1), ectin’®, ujc(t, 7))

- /r Bt )T (£.4(2), exti™ (1), (.4 )" ()

+ /r Vot (£), extn, 2(2), uje(t.7))n"(d).



Transversality condition

(T, y)in" = =Vxo(y(T), ertin")
— /r Vmo (Y (t), ertn®, v (T))n*(dv')

for n*-a.e. vy €.



Maximization of the Hamiltonian condition

H(s.4(5), estn” (s,7). 4" (5,7))
= max Hi(s, 1(s), estn”, U(5.7),u)

fora.e. s€[0,T] and n*-a.e. y€T.



Local minimizers and PMP for the Eulerian approach



Eulerian approach

» Control process: (m(-), ug), where m(t) is a probability on R,
ug 1[0, T] x RY — U.

» Dynamics: m(-) is a distributional solution of the nonlocal
continuity equation:
O¢m(t) + div(ve(t,x)m(t)) =0,
for ve(t, x) = f(t,x, m(t), ug(t, x)).
» Initial condition: m(0) = mq.
> Payoff:

Je(p, ug) 2 /Rd o(x,m(T))m(T,dx)

+/0T/Rdﬁ)(t,><7m(t),uE(tjx))m(t,dX)dt.



Convexity condition for the Eulerian case

» the set U is a closed convex subset of a Banach space;
» the mapping U > v+ f(t,x, m,u) is affine in u, i.e., for
t€[0,T], xeRY mePP(RY), u,up € U, a€[0,1],

f(t,x,m,auy + (1 — a)un)
= af(t,x,m,u1) + (1 — a)f(t,x, m, w2);

» the function fy is convex in u, i.e., for every t € [0, T],
x€RY, mePP(RY), ur,ur € U, a €0,1],

fO(t7X7 m, auy + (1 — OZ)UQ)
S Oéﬁ)(t,x, m7 U]_) + (]- - Oé)fi)(t,x, m, U2).



Eulerian local minimizer

A Eulerian control process (m*(-), ug) is a strong local minimizer at
mg if there exists ¢ > 0 such that: for any Eulerian process
(m(-), ug) satisfying Wy,(m(t), m*(t)) <e,

Je(m*(-), ug) < Je(m(-), ue)-



Eulerian and Lagrangian processes

Let (m(-), ug) be an Eulerian control process. A Lagrangian control
process (X, ur) defined on a standard probability space (22, F, P)
realizes (m*(-), ug) provided that

» m(t) = X(t)4P for every t € [0, T];

» u(t,w) = ueg(t,X(t,w)) fora.e. t € [0, T] and P-a.e. w € Q.



Eulerian minimizer implies Lagrangian one

Theorem

Let (m*(-), uf) be a strong local minimizer in the Euler framework
and let (X*, u}) be a Lagrangian process defined on some standard
probability space (2, F,P) that realizes (m*(-), ug).

Then, (X*, u}) is a strong local minimizer at mo within the
Lagrangian framework.



Eulerian minimizer implies Lagrangian one

Theorem

Assume that (m(-), ug) is an Eulerian control process.
Furthermore, let a standard probability space (0, F,P) be such
that at least one the following conditions satisfies:

» the probability P has no atoms,
> (Q,F,P)=(I,B(I),n), and n is concentrated on solutions of

%’Y(t) = f(t,~v(t), m(t), ue(t,v(t)))

and m(t) = e:fn.

Then, there exists a Lagrangian process (X, uy) defined on
(Q, F,P) that realizes (m(-), ug). Furthermore, in the second case,
we can put X =idq and ug(t,v(t)) = ur(t,7).



Pontryagin maximum principle for the Eulerian framework

Let an Eulerian control process (m*(-), uf) be a strong local
minimizer at mg. Then, there exists a flow of probabilities
v*(-) : [0, T] = PPNI(R? x RY*) satisfying

>
>

consistency condition;

continuity equation playing both the roles of state and costate
equations;

transversality condition;

maximization of the Hamiltonian condition.



Consistency condition

p! fr(t) = m*(t) vVt e [0, T];

Here p/(x1, x2) £ x;.



Joint state and costate continuity equation

v*(+) is a distributional solution of the continuity equation
O™ +div(/(t, x, Y)") =

where the vector field 7 (t,x,v) = (£x(t, x,v), 7y(t, x,1)) is
given by

Zx(t,x,0) 2 £(t,x, m*(t), ug(t, x)),
Lot x,9) =
— PV f (8, x, m*(t), ug(t, x))
+ Vifo(t, x, m*(t), ug(t, x))

= Tty m (05 v ) (5. (. )

[ bl (€)%, (e y))m (¢, dy);
R



Continuity equation

v(-) is a distributional solution of the nonlocal continuity equation:
Oev(t) + div(/ (t, x, ¥)v(t)) = 0,

iff, for every p € C°((0, T) x RY x R%*),

_
/ / [Dep(t, %, 1) + V(.3 1) £x(t, 3, 1)
0 Rd x Rd:*

+ Zo(t, %, V) Vyp(t, x, )| v(t, d(x,v¥))dt = 0.



Transversality condition

0 4(T) = [— Vo, m*(T))

= | Varly " (7). (T ) (7).

Here p/(x1, %) 2 x;.



Maximization condition

H(S7X7 m*(s), Y, UE(S,X)) = mea&( H(S’Xv m*(5)7¢’ U)

for almost every s € [0, T] and v*(s)-a.e. (x,9) € R? x R9*.



Costate equation in the Hamiltonian form

» Hamiltonian for the Eulerian framework:

¥ (t,v,u) = / H(t, x, p* tv, 1, u)v(d(x,)).

R4 xRd;*
» Unit symplectic matrix: J(¢,y) = (y, —().

» Averaged terminal payoff:

oS’(m)é/ o(x, m)m(dx).
Rd
State+costate equation:

O™ +div(IV,Z (t,v*(t), x, ¢, ug(t,x))v*) =0,
p* 1v*(0) = mo,
p* 8 (T) = ~VmS(p" 8" (T), Ji(p" t*(T)).



Example. Mean field type linear-quadratic regulator



Dynamics and payoffs
Dynamics of each agent:
—X(t,w) = A(t)X(t,w) + B(t)u(t,w),
Total payoff:
T
;E(/O [XT(£)Qu(t)X(t) + uT (t)R(t)u(t)]dt
+XT(T)KX(t)X(T)>
1 T
+/ E[(X(t) — EX(t))T Qm(t)(X(t) — EX(t))]dt

2 Jo
L %E[(x(r) — EX(T))T Ken(X(T) — EX(T))].



Optimal control

ut(t,w) = —R_l(t)BT(t)[Pl(t)(X*(t,w) —EX*(t))
+ P(t)EX*(1)],



Ricatti equation for P,

S Pi(t) = ~PuDA(Y)
~AT()P(1)
+ PU(OBR()B(P(Y)
(D) + Qn()

boundary condition:

Pi(T) = K« + Knm,



Ricatti equation for P»

d
2 P2(D) = =Pa(D)A(t) = AT(£)Pa(1)

+ P2(t)B(t)R™ () B(£) Pa(t) — Qx(1);

boundary condition:



Thank you for your attention!



