◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Sub-Riemannian abnormal extremals

Eero Hakavuori

SISSA

December 1, 2021

Sub-Riemannian manifolds

A sub-Riemannian manifold consists of

- a smooth manifold *M*
- \bullet a bracket-generating distribution $\Delta \subset \mathit{TM}$
- \bullet a smoothly varying inner product on Δ

Assume (for simplicity):

- Δ has a global orthonormal frame X_1, \ldots, X_r
- the vector fields X_1, \ldots, X_r are complete

The endpoint map

Fix a base point $p \in M$.

Definition (Endpoint map)

The endpoint map is the map

End:
$$L^2([0,1]; \mathbb{R}^r) \to M, \quad u \mapsto \gamma_u(1),$$

where $\gamma_u \colon [0,1] \to M$ is the curve

$$\dot{\gamma}_u(t) = \sum u_i(t) X_i(\gamma_u(t))$$

 $\gamma_u(0) = p$

Assumptions \implies endpoint map well defined and surjective.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The endpoint map

Abnormal \leftrightarrow critical points and values of the endpoint map.

Abnormal control = critical point $u \in L^2$ of the endpoint map Abnormal curve = integral curve γ_u of an abnormal control uAbnormal set = the set of critical values of the endpoint map

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The endpoint map

Abnormal \leftrightarrow critical points and values of the endpoint map.

Abnormal control = critical point $u \in L^2$ of the endpoint map Abnormal curve = integral curve γ_u of an abnormal control uAbnormal set = the set of critical values of the endpoint map = the subset of M that can be reached from the basepoint with an abnormal curve.

Abnormal dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Open problems

Conjecture (Sard)

The abnormal set has zero measure.

Conjecture (Regularity)

All length-minimizing curves are smooth.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Open problems

Conjecture (Sard)

The abnormal set has zero measure.

Conjecture (Regularity)

All length-minimizing curves are smooth.

The two types of length-minimizing curves.

- $\ \, {\rm ormal: \ satisfy \ a \ geodesic \ equation \ \Longrightarrow \ are \ smooth }$
- abnormal: unknown regularity

Some regularity results

- Strichartz 1986: C^{∞} -regularity for strongly bracket generating structures
- H. and Le Donne 2016: geodesics do not have corner-type singularities
- Monti, Pigati, and Vittone 2018: existence of tangent lines
- Belotto da Silva, Figalli, Parusiński, and Rifford 2018: C¹-regularity for 3-dimensional analytic sub-Riemannian manifolds
- Barilari, Chitour, Jean, Prandi, and Sigalotti 2020:
 C¹-regularity for rank 2 step 4 sub-Riemannian structures

Some Sard results

Assume the sub-Riemannian structure is analytic. Then the abnormal set is ...

- ...contained in a closed nowhere dense set (Agrachëv 2009)
- ...a countable union of semianalytic curves in the case of 3d-manifolds (Belotto da Silva, Figalli, Parusiński, and Rifford 2018)
- ...a proper algebraic subvariety in Carnot groups of step 2, in $\mathbb{F}_{2,4}$ (free Carnot group of rank 2 step 4), and in $\mathbb{F}_{3,3}$ (Le Donne, Montgomery, Ottazzi, Pansu, and Vittone 2016)
- ...a proper sub-analytic subvariety in Carnot groups of rank 3 step 3, and in rank 2 step 4 (Boarotto and Vittone 2020)

Carnot groups

• a Carnot group G: a nilpotent Lie group whose Lie algebra is stratified

$$\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad [\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}] = \mathfrak{g}^{[i+1]}$$

- The basepoint p is the identity element e.
- Δ is the left-invariant distribution with $\Delta_e = \mathfrak{g}^{[1]}$.
- The orthonormal frame X_1, \ldots, X_r is left-invariant.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Part I: The metric approach

Abnormal dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Gromov-Hausdorff convergence

- (Z, d) a metric space
- $X_1, X_2 \subset Z$

Definition (Hausdorff distance)

$d_H(X_1, X_2) = \inf\{r > 0 : X_1 \subset B(X_2, r) \text{ and } X_2 \subset B(X_1, r)\}$

Gromov-Hausdorff convergence

- (Z, d) a metric space
- $X_1, X_2 \subset Z$

Definition (Hausdorff distance)

 $d_H(X_1, X_2) = \inf\{r > 0 : X_1 \subset B(X_2, r) \text{ and } X_2 \subset B(X_1, r)\}$

- (X₁, d₁), (X₂, d₂) metric spaces
- (Z, d) metric space such that $(X_1, d_1) \hookrightarrow (Z, d)$ and $(X_2, d_2) \hookrightarrow (Z, d)$ isometrically.

Definition (Gromov-Hausdorff distance)

$$d_{GH}(X_1,X_2) = \inf_Z d_H(X_1,X_2)$$

Abnormal dynamics

Gromov-Hausdorff convergence

• (X_k, x_k, d_k) , $k \in \mathbb{N}$, pointed metric spaces

Definition (Pointed Gromov-Hausdorff convergence)

 $(X_k, x_k, d_k) \xrightarrow{GH} (Y, y, d_Y)$ if $\forall r \quad \forall \epsilon \quad \exists k_0 \quad \forall k > k_0$ \exists *Gromov-Hausdorff approximation* $f : B(x_k, r) \subset X_k \rightarrow Y$ with

- f distorts distance by at most ϵ
- f preserves the basepoint
- f is ϵ -almost surjective onto the r ball

Abnormal dynamics

Gromov-Hausdorff convergence

• (X_k, x_k, d_k) , $k \in \mathbb{N}$, pointed metric spaces

Definition (Pointed Gromov-Hausdorff convergence)

 $(X_k, x_k, d_k) \xrightarrow{GH} (Y, y, d_Y)$ if $\forall r \quad \forall \epsilon \quad \exists k_0 \quad \forall k > k_0$ \exists *Gromov-Hausdorff approximation* $f : B(x_k, r) \subset X_k \rightarrow Y$ with

• $|d(f(x), f(z)) - d(x, z)| < \epsilon$

•
$$f(x_k) = y$$

•
$$B(y, r - \epsilon) \subset B(f(B(x_k, r)), \epsilon)$$

Abnormal dynamics

Gromov-Hausdorff convergence

•
$$(X_k, x_k, d_k)$$
, $k \in \mathbb{N}$, pointed metric spaces

Definition (Pointed Gromov-Hausdorff convergence)

 $(X_k, x_k, d_k) \xrightarrow{GH} (Y, y, d_Y)$ if $\forall r \quad \forall \epsilon \quad \exists k_0 \quad \forall k > k_0$ \exists *Gromov-Hausdorff approximation* $f : B(x_k, r) \subset X_k \rightarrow Y$ with

• $|d(f(x), f(z)) - d(x, z)| < \epsilon$

•
$$f(x_k) = y$$

•
$$B(y, r - \epsilon) \subset B(f(B(x_k, r)), \epsilon)$$

Example: $(S^1(0,r),(r,0)) \xrightarrow{GH} (\mathbb{R},0)$ as $r \to \infty$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Metric tangents

Definition

$$(Y, y, d_Y)$$
 is a metric tangent to (X, d_X) at $x \in X$ if $(X, x, \lambda d_X) \xrightarrow{GH} (Y, y, d_Y)$ as $\lambda \to \infty$.

Metric tangents

Definition

$$(Y, y, d_Y)$$
 is a metric tangent to (X, d_X) at $x \in X$ if $(X, x, \lambda d_X) \xrightarrow{GH} (Y, y, d_Y)$ as $\lambda \to \infty$.

Theorem (Mitchell 1985)

The metric tangent of an equiregular sub-Riemannian manifold is a sub-Riemannian Carnot group.

Theorem (Bellaïche 1996)

The metric tangent of any sub-Riemannian manifold is a sub-Riemannian homogeneous space (=a quotient of a sub-Riemannian Carnot group).

Abnormal dynamics

Metric tangents to geodesics

- (M, d) a sub-Riemannian manifold
- $p \in M$ a basepoint
- $\gamma \colon (-1,1) \to M$ a geodesic through $\gamma(0) = p$
- $(M, p, \lambda d) \xrightarrow{GH} (G, e, d_G)$ as $\lambda \to \infty$
- $f_{\lambda,r,\epsilon} \colon B(p,r/\lambda) o G$ Gromov-Hausdorff approximations

Metric tangents to geodesics

- (M, d) a sub-Riemannian manifold
- $p \in M$ a basepoint
- $\gamma \colon (-1,1) \to M$ a geodesic through $\gamma(0) = p$
- $(M, p, \lambda d) \xrightarrow{GH} (G, e, d_G)$ as $\lambda \to \infty$
- $f_{\lambda,r,\epsilon}: B(p,r/\lambda) \to G$ Gromov-Hausdorff approximations = $B_{\lambda d}(p,r)$

Abnormal dynamics

Metric tangents to geodesics

- (M, d) a sub-Riemannian manifold
- $p \in M$ a basepoint
- $\gamma \colon (-1,1) \to M$ a geodesic through $\gamma(0) = p$
- $(M, p, \lambda d) \xrightarrow{GH} (G, e, d_G)$ as $\lambda \to \infty$
- $f_{\lambda,r,\epsilon} \colon B(p,r/\lambda) \to G$ Gromov-Hausdorff approximations

 $f_{\lambda,r,\epsilon}(\gamma)$ may not approximate a curve $\sigma \colon \mathbb{R} \to G$ as $\lambda \to \infty$.

Abnormal dynamics

Metric tangents to geodesics

- (M, d) a sub-Riemannian manifold
- $p \in M$ a basepoint
- $\gamma \colon (-1,1) \to M$ a geodesic through $\gamma(0) = p$
- $(M, p, \lambda d) \xrightarrow{GH} (G, e, d_G)$ as $\lambda \to \infty$
- $f_{\lambda,r,\epsilon} \colon B(p,r/\lambda) \to G$ Gromov-Hausdorff approximations

 $f_{\lambda,r,\epsilon}(\gamma)$ may not approximate a curve $\sigma \colon \mathbb{R} \to G$ as $\lambda \to \infty$.

 $\exists \sigma \iff \gamma \text{ differentiable at 0.}$

Metric tangents to geodesics

- (M, d) a sub-Riemannian manifold
- $p \in M$ a basepoint
- $\gamma \colon (-1,1) \to M$ a geodesic through $\gamma(0) = p$
- $(M, p, \lambda d) \xrightarrow{GH} (G, e, d_G)$ as $\lambda \to \infty$
- $f_{\lambda,r,\epsilon} \colon B(p,r/\lambda) o G$ Gromov-Hausdorff approximations

 $f_{\lambda,r,\epsilon}(\gamma)$ may not approximate a curve $\sigma \colon \mathbb{R} \to G$ as $\lambda \to \infty$.

 $\exists \sigma \iff \gamma \text{ differentiable at 0.}$

Arzela-Ascoli $\implies \exists \sigma \text{ up to a subsequence } \lambda_k \to \infty$

うせん 同一人用 人用 人用 人口 マ

Metric tangents to geodesics

- (M, d) a sub-Riemannian manifold
- $p \in M$ a basepoint
- $\gamma \colon (-1,1) \to M$ a geodesic through $\gamma(0) = p$
- $(M, p, \lambda d) \xrightarrow{GH} (G, e, d_G)$ as $\lambda \to \infty$
- $f_{\lambda,r,\epsilon} \colon B(p,r/\lambda) \to G$ Gromov-Hausdorff approximations

 $f_{\lambda,r,\epsilon}(\gamma)$ may not approximate a curve $\sigma \colon \mathbb{R} \to G$ as $\lambda \to \infty$.

 $\exists \sigma \iff \gamma \text{ differentiable at 0.}$

Arzela-Ascoli $\implies \exists \sigma \text{ up to a subsequence } \lambda_k \to \infty$

Definition

$$\operatorname{Tan}(\gamma, \mathbf{0}) = \{ \sigma : (\gamma, \gamma(\mathbf{0}), \lambda_k d) \xrightarrow{GH} (\sigma, \sigma(\mathbf{0}), d_G), \lambda_k \to \infty \}$$

Introduction 0000000 Metric approach to regularity

Abnormal dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Metric tangents to geodesics

Immediate consequences:

Lemma

 γ geodesic \implies every $\sigma \in Tan(\gamma, 0)$ is a geodesic

Lemma

 $\operatorname{Tan}(\operatorname{Tan}(\gamma, t), 0) \subset \operatorname{Tan}(\gamma, t).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Metric tangents to geodesics

Immediate consequences:

Lemma

 γ geodesic \implies every $\sigma \in Tan(\gamma, 0)$ is a geodesic

Proof: $f_{\lambda,r,\epsilon}$ are ϵ -quasi-isometries.

Lemma

 $\operatorname{Tan}(\operatorname{Tan}(\gamma, t), 0) \subset \operatorname{Tan}(\gamma, t).$

Proof: a diagonal argument.

Introduction 0000000 Metric approach to regularity

Abnormal dynamics

Metric tangents in Carnot groups

M sub-Riemannian manifold

•
$$(M, p, \lambda d) \xrightarrow{GH} (G, e, d_G)$$

•
$$\gamma \colon (-1,1) o M$$
, $\gamma(0) = p$

•
$$\sigma \colon \mathbb{R} \to {\sf G}$$
, $\sigma(0) = e$

Gromov-Hausdorff convergence $(\gamma, \gamma(0), \lambda d) \xrightarrow{GH} (\sigma, \sigma(0), d_G)$

Introduction 0000000 Metric approach to regularity

Abnormal dynamics

A D N A 目 N A E N A E N A B N A C N

Metric tangents in Carnot groups

M sub-Riemannian manifold

•
$$(M, p, \lambda d) \xrightarrow{GH} (G, e, d_G)$$

- $\gamma \colon (-1,1) \to M$, $\gamma(0) = p$
- $\sigma \colon \mathbb{R} \to G$, $\sigma(0) = e$

Gromov-Hausdorff convergence $(\gamma, \gamma(0), \lambda d) \xrightarrow{GH} (\sigma, \sigma(0), d_G)$

- G sub-Riemannian Carnot group
- (G, e, d) and $(G, e, \lambda d)$ are isometric by dilation $\delta_{\lambda} \colon G \to G$ $\implies (G, e, \lambda d) \xrightarrow{GH} (G, e, d)$

 $\gamma_{\lambda} \rightarrow \sigma$ uniformly on compact sets, where

$$\gamma_{\lambda} \colon (-\lambda, \lambda) \to G, \quad \gamma_{\lambda}(t) = \delta_{\lambda}(\gamma(t/\lambda)).$$

Abnormal dynamics

Metric tangents to geodesics

•
$$\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[\mathfrak{s}]}, \quad [\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}] = \mathfrak{g}^{[i+1]}$$

- $G = \exp(\mathfrak{g})$ a Carnot group
- $\pi_{s} \colon G o G / \exp(\mathfrak{g}^{[s]})$ the quotient projection down one step

Theorem (H. and Le Donne 2018)

 $\gamma: (-1, 1) \to G$ geodesic and $\sigma \in \operatorname{Tan}(\gamma, 0)$. Then $\pi_s \circ \sigma \colon \mathbb{R} \to G/\exp(V_s)$ is also a geodesic.

Abnormal dynamics

Metric tangents to geodesics

•
$$\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[\mathfrak{s}]}, \quad [\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}] = \mathfrak{g}^{[i+1]}$$

- $G = \exp(\mathfrak{g})$ a Carnot group
- $\pi_{s} \colon G o G / \exp(\mathfrak{g}^{[s]})$ the quotient projection down one step

Theorem (H. and Le Donne 2018)

 $\gamma: (-1, 1) \to G$ geodesic and $\sigma \in \operatorname{Tan}(\gamma, 0)$. Then $\pi_s \circ \sigma \colon \mathbb{R} \to G/\exp(V_s)$ is also a geodesic.

Corollary

$$\gamma: (-1, 1) \to G$$
 geodesic and
 $\sigma \in \operatorname{Tan}^{s}(\gamma, 0) = \operatorname{Tan}(\operatorname{Tan}(\cdots \operatorname{Tan}(\gamma, 0), \cdots, 0), 0).$
Then $\pi \circ \sigma: \mathbb{R} \to \mathbb{R}^{\dim \mathfrak{g}^{[1]}}$ is a geodesic.
That is, $\sigma(t) = \exp(tX)$ for some $X \in \mathfrak{g}^{[1]}$.

Large scale behaviour of geodesics

- G a Carnot group
- $r = \dim \mathfrak{g}^{[1]}$
- $\pi \colon \mathcal{G} \to \mathbb{R}^r$ the horizontal projection

Theorem (H. and Le Donne 2018)

 $\sigma : \mathbb{R} \to G$ a geodesic. \exists a hyperplane $W \subset \mathbb{R}^r$ and $\exists R > 0$ such that $\pi \circ \gamma(\mathbb{R}) \subset B(W, R)$.

The cut & correct method

A non-minimality proof strategy (Leonardi and Monti 2008):

- The cut: replace σ|_[a,b] with the lift of a geodesic from a lower step Carnot group
- In the correction: perturb the curve so that
 - the endpoint is reverted to the original endpoint, and
 - length remains smaller than the original curve's

Introd	
0000	000

The cut & correct method – discretization

- Choose points g_1,\ldots,g_m along the geodesic σ
- $\bullet\,$ Write the endpoint of σ as

$$\begin{aligned} \sigma(1) &= \sigma(0) \cdot \sigma(0)^{-1} \cdot g_1 \cdot g_1^{-1} \cdot g_2 \cdots g_{m-1}^{-1} \cdot g_m \cdot g_m^{-1} \cdot \sigma(1) \\ &= \sigma(0) \cdot (\sigma(0)^{-1} \cdot g_1) \cdot (g_1^{-1} \cdot g_2) \cdots (g_{m-1}^{-1} \cdot g_m) \cdot (g_m^{-1} \cdot \sigma(1)) \end{aligned}$$

Introduction 0000000

The cut & correct method – discretization

- Choose points g_1,\ldots,g_m along the geodesic σ
- $\bullet\,$ Write the endpoint of σ as

$$egin{aligned} \sigma(1) &= \sigma(0) \cdot \sigma(0)^{-1} \cdot g_1 \cdot g_1^{-1} \cdot g_2 \cdots g_{m-1}^{-1} \cdot g_m \cdot g_m^{-1} \cdot \sigma(1) \ &= \sigma(0) \cdot (\sigma(0)^{-1} \cdot g_1) \cdot (g_1^{-1} \cdot g_2) \cdots (g_{m-1}^{-1} \cdot g_m) \cdot (g_m^{-1} \cdot \sigma(1)) \end{aligned}$$

- Easy to insert a perturbation curve $\alpha \colon [0,1] \to G$:
 - $\tilde{\sigma}(1) = \sigma(0) \cdot (\sigma(0)^{-1} \cdot g_1) \cdot (\alpha(0)^{-1} \cdot \alpha(1)) \cdot (g_1^{-1} \cdot g_2) \cdots$
- Perturbed points: $\tilde{g}_k = g_1 \cdot \alpha(0)^{-1} \cdot \alpha(1) \cdot g_1^{-1} \cdot g_k$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The cut & correct method – the cut

Lifting a geodesic from a lower step group in the discretization:

The cut & correct method – the cut

Lifting a geodesic from a lower step group in the discretization:

Lemma $\forall g \in G \quad \exists h \in \exp(\mathfrak{g}^{[s]}):$

$$d_{G/\exp(\mathfrak{g}^{[s]})}(e,\pi_s(g))=d_G(e,hg).$$

After replacing $\sigma|_{[a,b]}$ with a geodesic segment from $G/\exp(\mathfrak{g}^{[s]})$, either

- length decreases and the endpoint is translated by h ∈ exp(g^[s]), or
- 2 length does not change, so $\pi_s \circ \sigma|_{[a,b]}$ was already a geodesic

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The cut & correct method – the correction

- Choose r + 1 points g_0, \ldots, g_r along the curve γ .
- Por each curve segment g_{k-1} to g_k, insert α_k at g_{k-1}, and insert the reverse α_k⁻¹ at g_k.

The cut & correct method – the correction

- Choose r + 1 points g_0, \ldots, g_r along the curve γ .
- Por each curve segment g_{k-1} to g_k, insert α_k at g_{k-1}, and insert the reverse α_k⁻¹ at g_k.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The cut & correct method – the correction

- Choose r + 1 points g_0, \ldots, g_r along the curve γ .
- Por each curve segment g_{k-1} to g_k, insert α_k at g_{k-1}, and insert the reverse α_k⁻¹ at g_k.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The cut & correct method – the correction

A back-and-forth perturbation is a group commutator:

$$a\alpha a^{-1} \cdot b\alpha^{-1}b = a[\alpha, a^{-1}b]a^{-1}.$$

 \implies Perturbation in the layer s - 1 corrects an error in layer s.

The cut & correct method – the correction

A back-and-forth perturbation is a group commutator:

$$a\alpha a^{-1} \cdot b\alpha^{-1}b = a[\alpha, a^{-1}b]a^{-1}.$$

 \implies Perturbation in the layer s - 1 corrects an error in layer s.

Need to solve

$$L(\alpha_1,\ldots,\alpha_r) = \log h \in \mathfrak{g}^{[s]},$$

where $L: (\mathfrak{g}^{[s-1]})^r \to \mathfrak{g}^{[s]}$ is linear.

The cut & correct method – the correction

A back-and-forth perturbation is a group commutator:

$$a\alpha a^{-1} \cdot b\alpha^{-1}b = a[\alpha, a^{-1}b]a^{-1}.$$

 \implies Perturbation in the layer s - 1 corrects an error in layer s.

Need to solve

$$L(\alpha_1,\ldots,\alpha_r) = \log h \in \mathfrak{g}^{[s]},$$

where $L: (\mathfrak{g}^{[s-1]})^r \to \mathfrak{g}^{[s]}$ is linear.

Key ingredients:

- bracket-generating $\implies L$ is surjective
- norm of the right-inverse of L is controlled by the horizontal projection of g₀,...,g_r

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Part II: Abnormal dynamics

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Characterization of abnormal curves

Recall

- G a Carnot group of rank r
- X_1, \ldots, X_r orthonormal left-invariant frame

•
$$u \in [0,1] \rightarrow \mathbb{R}^r$$
, $\gamma_u \colon [0,1] \rightarrow G$
 $\dot{\gamma}_u(t) = \sum u_i(t) X_i(\gamma_u(t))$
 $\gamma_u(0) = p$

• γ_u abnormal $\iff u$ critical point of $u \mapsto \gamma_u(1)$

Introduction 0000000 Metric approach to regularity

Abnormal dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Characterization of abnormal curves

 $\gamma_u \colon [0,1] \to M$ abnormal $\iff \lambda$ is a characteristic curve of the symplectic form restricted to Δ^{\perp} (Hsu 1992)

Abnormal dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Characterization of abnormal curves

 $T^*G\simeq G\times \mathfrak{g}^*$ by right-trivialization

 $\begin{array}{l} \gamma_{u} \colon [0,1] \to M \text{ abnormal } \iff \lambda \in \mathfrak{g}^{*} \text{ constant with} \\ \lambda(\operatorname{Ad}_{\gamma_{u}(t)} \mathfrak{g}^{[1]}) = 0 \end{array}$

$$\mathsf{Ad}\colon \mathcal{G}\to \mathrm{GL}(\mathfrak{g}), \quad \mathsf{Ad}_{\gamma} X = \frac{d}{ds} \gamma \cdot \exp(sX) \cdot \gamma^{-1}\big|_{s=0}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Characterization of abnormal curves

For $X \in \mathfrak{g}^{[1]}$, define the *abnormal polynomial*

 $P_X \colon G \to \mathbb{R}, \quad P_X(g) = \lambda(\operatorname{Ad}_g X)$

•
$$\gamma$$
 abnormal $\iff P_X(\gamma(t)) = 0$ for all $X \in \mathfrak{g}^{[1]}$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Characterization of abnormal curves

For $X \in \mathfrak{g}^{[1]}$, define the *abnormal polynomial*

 $P_X \colon G \to \mathbb{R}, \quad P_X(g) = \lambda(\operatorname{Ad}_g X)$

•
$$\gamma$$
 abnormal $\iff {\mathcal P}_X(\gamma(t))=0$ for all $X\in {\mathfrak g}^{[1]}.$

Abnormal dynamics: consider the (singular) foliation tangent to $\Delta \cap T\{P_X = 0\}.$

A dynamical approach

Rank 2: for $P = P_X$

$$0=\frac{d}{dt}P(\gamma_u(t))=u_1(t)X_1P(\gamma_u(t))+u_2(t)X_2P(\gamma_u(t)).$$

A dynamical approach

Rank 2: for $P = P_X$

$$0=\frac{d}{dt}P(\gamma_u(t))=u_1(t)X_1P(\gamma_u(t))+u_2(t)X_2P(\gamma_u(t)).$$

When $(X_1P, X_2P) \neq 0$, up to reparametrization

$$u_1(t) = -X_2 P(\gamma_u(t))$$
$$u_2(t) = X_1 P(\gamma_u(t))$$

 \implies ODE for γ_u .

A dynamical approach

Theorem (Barilari, Chitour, Jean, Prandi, and Sigalotti 2020)

In sub-Riemannian manifolds of rank 2 and step 4, abnormal minimizers have C^1 regularity.

Theorem (Boarotto and Vittone 2020)

In Carnot groups of rank 3 step 3, or rank 2 step 4, the abnormal set is a sub-analytic set of codimension at least one.

Proof strategy:

- The dynamics is linear.
- Separate cases by the Jordan form of the linear part.
- Study the dynamics explicitly in the normal forms.

Abnormal dynamics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Abnormal dynamics is complicated

Theorem (H. 2020)

Let $\dot{x} = P(x)$ be a polynomial ODE system in \mathbb{R}^r . There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

For $x = (x_1, \ldots, x_r)$, a lift is γ_u where $u_i = \dot{x}_i$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Abnormal dynamics is complicated

Theorem (H. 2020)

Let $\dot{x} = P(x)$ be a polynomial ODE system in \mathbb{R}^r . There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

For
$$x = (x_1, \ldots, x_r)$$
, a lift is γ_u where $u_i = \dot{x}_i$.

Proof idea:

- Every polynomial ODE has a polynomial first integral in a lift.
- 2 Curves contained in an algebraic variety are abnormal in a lift.

Construction of a first integral

Theorem (H. 2020)

Let $\dot{x} = P(x)$ be a polynomial ODE system in \mathbb{R}^r . There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

For
$$x = (x_1, \ldots, x_r)$$
, a lift is γ_u where $u_i = \dot{x}_i$

Proof idea:

- Every polynomial ODE has a polynomial first integral in a lift.
- 2 Curves contained in an algebraic variety are abnormal in a lift.

Horizontal gradients

Lemma

Every polynomial vector field $P : \mathbb{R}^r \to \mathbb{R}^r$ is the horizontal gradient of some polynomial in a Carnot group of high enough step.

Horizontal gradients

Lemma

Every polynomial vector field $P : \mathbb{R}^r \to \mathbb{R}^r$ is the horizontal gradient of some polynomial in a Carnot group of high enough step.

For the frame X_1, \ldots, X_r the horizontal gradient of $Q \colon G \to \mathbb{R}$ is

$$abla_{\mathsf{hor}} Q = \sum (X_i Q) X_i \colon G o TG.$$

Horizontal gradients

Lemma

Every polynomial vector field $P : \mathbb{R}^r \to \mathbb{R}^r$ is the horizontal gradient of some polynomial in a Carnot group of high enough step.

For the frame X_1, \ldots, X_r the horizontal gradient of $Q \colon G \to \mathbb{R}$ is

$$abla_{\mathsf{hor}} Q = \sum (X_i Q) X_i \colon G o TG.$$

In coordinates, lift $P \colon \mathbb{R}^r \to \mathbb{R}^r$ to the horizontal vector field

$$P: G \to TG, \quad P(x_1, \ldots, x_r, \ldots, x_n) = \sum_{i=1}^r P_i(x_1, \ldots, x_r) X_i(x)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

Introduction 0000000 Metric approach to regularity

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

Gradients in \mathbb{R}^r

$P = (P_1, \dots, P_r) = \nabla Q$ for some $Q \colon \mathbb{R}^r \to \mathbb{R} \iff \partial_i P_j = \partial_j P_i$

Introduction 0000000 Metric approach to regularity

Gradients in \mathbb{R}^r

$$P = (P_1, \dots, P_r) = \nabla Q$$
 for some $Q \colon \mathbb{R}^r \to \mathbb{R} \iff \partial_i P_j = \partial_j P_i$

Recursion for *Q*:

$$Q_1 = \int P_1 dx_1$$

$$Q_2 = Q_1 + \int (P_2 - \partial_2 Q_1) dx_2$$

$$\vdots$$

$$Q = Q_r = Q_{r-1} + \int (P_r - \partial_r Q_{r-1}) dx_r$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Abnormal dynamics

A non-gradient vector field in \mathbb{R}^r

$$P(x) = (x_1 - x_2, x_1 + x_2) \neq \nabla Q$$
 for any $Q \colon \mathbb{R}^2 \to \mathbb{R}$.

Abnormal dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

A non-gradient vector field in \mathbb{R}^r

 $P(x) = (x_1 - x_2, x_1 + x_2) \neq \nabla Q$ for any $Q \colon \mathbb{R}^2 \to \mathbb{R}$. Lift to a horizontal vector field in the Heisenberg group.

$$X_1(x) = \partial_1$$

$$X_2(x) = \partial_2 + x_1 \partial_3$$

$$X_3(x) = [X_1, X_2](x) = \partial_3$$

 $P: H \to TH, \quad P(x) = (x_1 - x_2)X_1(x) + (x_1 + x_2)X_2(x)$

Abnormal dynamics

A non-gradient vector field in \mathbb{R}^r

 $P(x) = (x_1 - x_2, x_1 + x_2) \neq \nabla Q$ for any $Q \colon \mathbb{R}^2 \to \mathbb{R}$. Lift to a horizontal vector field in the Heisenberg group.

$$egin{aligned} X_1(x) &= \partial_1 \ X_2(x) &= \partial_2 + x_1 \partial_3 \ X_3(x) &= [X_1, X_2](x) = \partial_3 \end{aligned}$$

 $P: H \to TH, \quad P(x) = (x_1 - x_2)X_1(x) + (x_1 + x_2)X_2(x)$

Then $P = \nabla_{hor} Q$ for the polynomial

$$Q(x) = \frac{1}{2}x_1^2 - x_1x_2 + \frac{1}{2}x_2^2 + 2x_3$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆

Introduction 0000000 Metric approach to regularity

Abnormal dynamics

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Recursion for horizontal gradient integration

$$X_1 Q = x_1 - x_2$$
$$X_2 Q = x_1 + x_2$$

Introduction 0000000 Metric approach to regularity

Abnormal dynamics

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Recursion for horizontal gradient integration

$$X_1 Q = x_1 - x_2$$
$$X_2 Q = x_1 + x_2$$

Compute commutators:

$$X_3Q = [X_1, X_2]Q = X_1(X_2Q) - X_2(X_1Q) = 2$$

Abnormal dynamics

æ

Recursion for horizontal gradient integration

$$X_1 Q = x_1 - x_2$$
$$X_2 Q = x_1 + x_2$$

Compute commutators:

$$X_3Q = [X_1, X_2]Q = X_1(X_2Q) - X_2(X_1Q) = 2$$

Integrate backwards:

$$Q_{3} = \int X_{3}Q \, dx_{3}$$

$$Q_{2} = Q_{3} + \int (X_{2}Q - X_{2}Q_{3}) \, dx_{2}$$

$$Q = Q_{1} = Q_{2} + \int (X_{1}Q - X_{1}Q_{2}) \, dx_{1}$$

$$= \frac{1}{2}x_{1}^{2} - x_{1}x_{2} + \frac{1}{2}x_{2}^{2} + 2x_{3}$$

Recursion for horizontal gradient integration

Why it works:

- As weighted differential operators, [X₁, X₂] is a degree 2 operator, [X₁, [X₁, X₂]] is degree 3, etc.
 - \implies partial derivatives of a polynomial eventually vanish
- There exist coordinates such that $X_i = \partial_i + \sum_{j>i} c_{ij}\partial_j$. \implies integration variable by variable is possible

A horizontal first integral

For an ODE

$$\dot{x}_i = P_i(x), \quad x \in \mathbb{R}^r, \quad i = 1, \dots, n$$

integrate any nonzero orthogonal vector field.

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

A horizontal first integral

For an ODE

$$\dot{x}_i = P_i(x), \quad x \in \mathbb{R}^r, \quad i = 1, \dots, n$$

integrate any nonzero orthogonal vector field. E.g. if $P_1 \neq 0$, integrate

$$X_1Q = -P_2, \quad X_2Q = P_1 \quad X_3Q = X_4Q = \cdots = X_rQ = 0.$$

A horizontal first integral

For an ODE

$$\dot{x}_i = P_i(x), \quad x \in \mathbb{R}^r, \quad i = 1, \dots, n$$

integrate any nonzero orthogonal vector field. E.g. if $P_1 \neq 0$, integrate

$$X_1Q = -P_2, \quad X_2Q = P_1 \quad X_3Q = X_4Q = \cdots = X_rQ = 0.$$

Then for a trajectory $x : [0,1] \to G$ of $\dot{x} = \sum P_i(x)X_i(x)$

$$\frac{d}{dt}Q(x)=P_1(x)X_1Q(x)+\cdots+P_r(x)X_rQ(x)=0.$$

・ロト・日本・日本・日本・日本・日本

Abnormal factors

Theorem (H. 2020)

Let $\dot{x} = P(x)$ be a polynomial ODE system in \mathbb{R}^r . There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

Proof idea:

- Every polynomial ODE has a polynomial first integral in a lift.
- ② Curves contained in an algebraic variety are abnormal in a lift.

Higher order abnormality

$$\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[\mathfrak{s}]}, \quad [\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}] = \mathfrak{g}^{[i+1]}.$$

Definition

$$\gamma \colon [0,1] \to G \text{ abnormal } \iff \lambda(\operatorname{\mathsf{Ad}}_{\gamma(t)} \mathfrak{g}^{[1]}) = 0$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Higher order abnormality

$$\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad [\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}] = \mathfrak{g}^{[i+1]}.$$

Definition

$$\gamma \colon [0,1] \to G \text{ abnormal } \iff \lambda(\operatorname{\mathsf{Ad}}_{\gamma(t)} \mathfrak{g}^{[1]}) = 0$$

Definition

$$\gamma$$
 abnormal of order $k \iff \lambda(\operatorname{Ad}_{\gamma(t)}(\mathfrak{g}^{[1]} \oplus \cdots \oplus \mathfrak{g}^{[k]})) = 0$

Higher order abnormality

$$\mathfrak{g} = \mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[\mathfrak{s}]}, \quad [\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}] = \mathfrak{g}^{[i+1]}.$$

Definition

$$\gamma \colon [0,1] \to G \text{ abnormal } \iff \lambda(\operatorname{\mathsf{Ad}}_{\gamma(t)} \mathfrak{g}^{[1]}) = 0$$

Definition

$$\gamma$$
 abnormal of order $k \iff \lambda(\operatorname{Ad}_{\gamma(t)}(\mathfrak{g}^{[1]} \oplus \cdots \oplus \mathfrak{g}^{[k]})) = 0$

Lemma

If
$$\gamma(0) = e$$
 and $\lambda(\operatorname{Ad}_{\gamma(t)} \mathfrak{g}^{[k]}) = 0$, then γ is abnormal of order k.

・ロト・日本・日本・日本・日本・日本

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Abnormal factors

Proposition

For any polynomial $Q: H \to \mathbb{R}$, there exists

- a Carnot group G with a projection $\pi: G \to H$
- $\bullet \ \lambda \in \mathfrak{g}^*$
- $k \in \mathbb{N}$

such that $Q \circ \pi \colon G \to \mathbb{R}$ is a factor of the polynomial $x \mapsto \lambda(\operatorname{Ad}_{x} Y)$ for every $Y \in \mathfrak{g}^{[k]}$.

Introduction 0000000 Metric approach to regularity

Abnormal dynamics

Abnormal factors proof

Consider a linear system

$$P_i^{\lambda} = Q \cdot S_i^{\nu}, \quad i = 1, \dots, m$$

in the variables (λ, ν)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Abnormal factors proof

Consider a linear system

$$P_i^{\lambda} = Q \cdot S_i^{\nu}, \quad i = 1, \dots, m$$

in the variables (λ, ν) , where

- $P_i^{\lambda}(x) = \lambda(\operatorname{Ad}_x Y_i)$ for a basis Y_1, \ldots, Y_m of $\mathfrak{g}^{[k]}$
- S_i^{ν} are generic polynomials of the form

$$S^{\nu} = \nu_0 + \nu_1 x_1 + \nu_2 x_2 + \nu_3 x_3 + \nu_4 x_1^2 + \nu_5 x_1 x_2 + \nu_6 x_2^2 + \dots$$

such that $\deg(S_i^{\nu}) + \deg(Q) = \deg(P_i)$.

Abnormal factors proof

Let

•
$$k = \deg Q + 1$$

• G_s a free Carnot group of step s

Lemma

The linear system

$$P_i^{\lambda} = Q \cdot S_i^{\nu}, \quad i = 1, \dots, m$$

has a non-trivial solution (λ, ν) in G_s for large s.

・ロト・日本・日本・日本・日本・日本

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Monomial counting

Proof of Lemma:

• Hall basis argument $\implies \exists \lambda = \lambda(\nu)$ such that $P_1^{\lambda(\nu)} = Q \cdot S_1^{\nu}$ Consider the remaining system

$$P_i^{\lambda(\nu)} = Q \cdot S_i^{\nu}, \quad i = 2, \dots, m$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Monomial counting

Proof of Lemma:

• Hall basis argument $\implies \exists \lambda = \lambda(\nu)$ such that $P_1^{\lambda(\nu)} = Q \cdot S_1^{\nu}$ Consider the remaining system

$$P_i^{\lambda(\nu)} = Q \cdot S_i^{\nu}, \quad i = 2, \dots, m$$

2 In step *s*, deg $(P_i^{\lambda}) \leq s - k$. The number of equations is

 $(m-1) \cdot \#\{$ monomials of degree up to $s - k\}$

and the number of variables is

 $m \cdot \#\{\text{monomials of degree up to } s - k - \deg(Q)\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Monomial counting

Proof of Lemma:

• Hall basis argument $\implies \exists \lambda = \lambda(\nu)$ such that $P_1^{\lambda(\nu)} = Q \cdot S_1^{\nu}$ Consider the remaining system

$$P_i^{\lambda(\nu)} = Q \cdot S_i^{\nu}, \quad i = 2, \dots, m$$

2 In step *s*, deg $(P_i^{\lambda}) \leq s - k$. The number of equations is

 $(m-1) \cdot \#\{$ monomials of degree up to $s - k\}$

and the number of variables is

 $m \cdot \#\{\text{monomials of degree up to } s - k - \deg(Q)\}$

Solution Poincaré series asymptotics for $s \to \infty$ \implies #variables \gg #equations.

The entire proof

Theorem (H. 2020)

Let $\dot{x} = P(x)$ be a polynomial ODE system in \mathbb{R}^r . There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

Proof:

- Severy polynomial ODE has a polynomial first integral in a lift.
 - Consider an orthogonal vector field.
 - Every polynomial vector field is a horizontal gradient.
- ② Curves contained in an algebraic variety are abnormal in a lift.
 - Common factors of abnormal polynomials = linear system.
 - \bullet Monomial counting \implies the system is underdetermined.

Abnormal dynamics

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Abnormals from linear ODEs

Abnormals in the free Carnot group of rank 2 and step 7

Abnormal dynamics

Abnormals from linear ODEs

Abnormals in the free Carnot group of rank 2 and step 7

 $\exists \lambda \colon \mathbb{R}^6 o \mathfrak{g}^*$ semi-algebraic such that trajectories of

$$\dot{x} = ax + by + c$$
 $\dot{y} = dx + ey + f$

are abnormal with covector $\lambda(a, b, c, d, e, f)$.

Abnormal dynamics

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Abnormals from quadratic ODEs

Abnormals in the free Carnot group of rank 2 and step 13

Abnormal dynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Abnormals from quadratic ODEs

Abnormals in the free Carnot group of rank 2 and step 13

Let $E \subset [0,1]$ be nowhere dense. \exists abnormal curve that is

- injective
- parametrized by arc length on $[0,1] \setminus E$
- not C^2 at any point $x \in E$
- if E is perfect, not C^1 at any point $x \in E$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Thank you for your attention!