Sub-Riemannian abnormal extremals

Eero Hakavuori
SISSA

December 1, 2021

Sub-Riemannian manifolds

A sub-Riemannian manifold consists of

- a smooth manifold M
- a bracket-generating distribution $\Delta \subset T M$
- a smoothly varying inner product on Δ

Assume (for simplicity):

- Δ has a global orthonormal frame X_{1}, \ldots, X_{r}
- the vector fields X_{1}, \ldots, X_{r} are complete

The endpoint map

Fix a base point $p \in M$.

Definition (Endpoint map)

The endpoint map is the map

$$
\text { End: } L^{2}\left([0,1] ; \mathbb{R}^{r}\right) \rightarrow M, \quad u \mapsto \gamma_{u}(1)
$$

where $\gamma_{u}:[0,1] \rightarrow M$ is the curve

$$
\begin{aligned}
& \dot{\gamma}_{u}(t)=\sum u_{i}(t) X_{i}\left(\gamma_{u}(t)\right) \\
& \gamma_{u}(0)=p
\end{aligned}
$$

Assumptions \Longrightarrow endpoint map well defined and surjective.

The endpoint map

Abnormal \leftrightarrow critical points and values of the endpoint map.

Abnormal control $=$ critical point $u \in L^{2}$ of the endpoint map
Abnormal curve $=$ integral curve γ_{u} of an abnormal control u
Abnormal set $=$ the set of critical values of the endpoint map

The endpoint map

Abnormal \leftrightarrow critical points and values of the endpoint map.

Abnormal control $=$ critical point $u \in L^{2}$ of the endpoint map
Abnormal curve $=$ integral curve γ_{u} of an abnormal control u
Abnormal set $=$ the set of critical values of the endpoint map
$=$ the subset of M that can be reached from the basepoint with an abnormal curve.

Open problems

Conjecture (Sard)

The abnormal set has zero measure.

Conjecture (Regularity)

All length-minimizing curves are smooth.

Open problems

Conjecture (Sard)

The abnormal set has zero measure.

Conjecture (Regularity)

All length-minimizing curves are smooth.
The two types of length-minimizing curves.
(1) normal: satisfy a geodesic equation \Longrightarrow are smooth
(2) abnormal: unknown regularity

Some regularity results

- Strichartz 1986: C^{∞}-regularity for strongly bracket generating structures
- H. and Le Donne 2016: geodesics do not have corner-type singularities
- Monti, Pigati, and Vittone 2018: existence of tangent lines
- Belotto da Silva, Figalli, Parusiński, and Rifford 2018: C^{1}-regularity for 3-dimensional analytic sub-Riemannian manifolds
- Barilari, Chitour, Jean, Prandi, and Sigalotti 2020: C^{1}-regularity for rank 2 step 4 sub-Riemannian structures

Some Sard results

Assume the sub-Riemannian structure is analytic.
Then the abnormal set is ...

- ...contained in a closed nowhere dense set (Agrachëv 2009)
- ...a countable union of semianalytic curves in the case of 3d-manifolds (Belotto da Silva, Figalli, Parusiński, and Rifford 2018)
- ...a proper algebraic subvariety in Carnot groups of step 2, in $\mathbb{F}_{2,4}$ (free Carnot group of rank 2 step 4), and in $\mathbb{F}_{3,3}$ (Le Donne, Montgomery, Ottazzi, Pansu, and Vittone 2016)
- ...a proper sub-analytic subvariety in Carnot groups of rank 3 step 3, and in rank 2 step 4 (Boarotto and Vittone 2020)

Carnot groups

- a Carnot group G: a nilpotent Lie group whose Lie algebra is stratified

$$
\mathfrak{g}=\mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad\left[\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}\right]=\mathfrak{g}^{[i+1]}
$$

- The basepoint p is the identity element e.
- Δ is the left-invariant distribution with $\Delta_{e}=\mathfrak{g}^{[1]}$.
- The orthonormal frame X_{1}, \ldots, X_{r} is left-invariant.

Part I: The metric approach

Gromov-Hausdorff convergence

- (Z, d) a metric space
- $X_{1}, X_{2} \subset Z$

Definition (Hausdorff distance)

$$
d_{H}\left(X_{1}, X_{2}\right)=\inf \left\{r>0: X_{1} \subset B\left(X_{2}, r\right) \text { and } X_{2} \subset B\left(X_{1}, r\right)\right\}
$$

Gromov-Hausdorff convergence

- (Z, d) a metric space
- $X_{1}, X_{2} \subset Z$

Definition (Hausdorff distance)

$d_{H}\left(X_{1}, X_{2}\right)=\inf \left\{r>0: X_{1} \subset B\left(X_{2}, r\right)\right.$ and $\left.X_{2} \subset B\left(X_{1}, r\right)\right\}$

- $\left(X_{1}, d_{1}\right),\left(X_{2}, d_{2}\right)$ metric spaces
- (Z, d) metric space such that $\left(X_{1}, d_{1}\right) \hookrightarrow(Z, d)$ and $\left(X_{2}, d_{2}\right) \hookrightarrow(Z, d)$ isometrically.

Definition (Gromov-Hausdorff distance)

$d_{G H}\left(X_{1}, X_{2}\right)=\inf _{Z} d_{H}\left(X_{1}, X_{2}\right)$

Gromov-Hausdorff convergence

- $\left(X_{k}, x_{k}, d_{k}\right), k \in \mathbb{N}$, pointed metric spaces

Definition (Pointed Gromov-Hausdorff convergence)

$\left(X_{k}, x_{k}, d_{k}\right) \xrightarrow{G H}\left(Y, y, d_{Y}\right)$ if $\quad \forall r \quad \forall \epsilon \quad \exists k_{0} \quad \forall k>k_{0}$
\exists Gromov-Hausdorff approximation $f: B\left(x_{k}, r\right) \subset X_{k} \rightarrow Y$ with

- f distorts distance by at most ϵ
- f preserves the basepoint
- f is ϵ-almost surjective onto the r ball

Gromov-Hausdorff convergence

- $\left(X_{k}, x_{k}, d_{k}\right), k \in \mathbb{N}$, pointed metric spaces

Definition (Pointed Gromov-Hausdorff convergence)

$\left(X_{k}, x_{k}, d_{k}\right) \xrightarrow{G H}\left(Y, y, d_{Y}\right)$ if $\quad \forall r \quad \forall \epsilon \quad \exists k_{0} \quad \forall k>k_{0}$
\exists Gromov-Hausdorff approximation $f: B\left(x_{k}, r\right) \subset X_{k} \rightarrow Y$ with

- $|d(f(x), f(z))-d(x, z)|<\epsilon$
- $f\left(x_{k}\right)=y$
- $B(y, r-\epsilon) \subset B\left(f\left(B\left(x_{k}, r\right)\right), \epsilon\right)$

Gromov-Hausdorff convergence

- $\left(X_{k}, x_{k}, d_{k}\right), k \in \mathbb{N}$, pointed metric spaces

Definition (Pointed Gromov-Hausdorff convergence)

$\left(X_{k}, x_{k}, d_{k}\right) \xrightarrow{G H}\left(Y, y, d_{Y}\right)$ if $\quad \forall r \quad \forall \epsilon \quad \exists k_{0} \quad \forall k>k_{0}$
\exists Gromov-Hausdorff approximation $f: B\left(x_{k}, r\right) \subset X_{k} \rightarrow Y$ with

- $|d(f(x), f(z))-d(x, z)|<\epsilon$
- $f\left(x_{k}\right)=y$
- $B(y, r-\epsilon) \subset B\left(f\left(B\left(x_{k}, r\right)\right), \epsilon\right)$

Example: $\left(S^{1}(0, r),(r, 0)\right) \xrightarrow{G H}(\mathbb{R}, 0)$ as $r \rightarrow \infty$.

Metric tangents

Definition

$\left(Y, y, d_{Y}\right)$ is a metric tangent to $\left(X, d_{X}\right)$ at $x \in X$ if $\left(X, x, \lambda d_{X}\right) \xrightarrow{G H}\left(Y, y, d_{Y}\right)$ as $\lambda \rightarrow \infty$.

Metric tangents

Definition

$\left(Y, y, d_{Y}\right)$ is a metric tangent to $\left(X, d_{X}\right)$ at $x \in X$ if $\left(X, x, \lambda d_{X}\right) \xrightarrow{G H}\left(Y, y, d_{Y}\right)$ as $\lambda \rightarrow \infty$.

Theorem (Mitchell 1985)

The metric tangent of an equiregular sub-Riemannian manifold is a sub-Riemannian Carnot group.

Theorem (Bellaïche 1996)

The metric tangent of any sub-Riemannian manifold is a sub-Riemannian homogeneous space (=a quotient of a sub-Riemannian Carnot group).

Metric tangents to geodesics

- (M, d) a sub-Riemannian manifold
- $p \in M$ a basepoint
- $\gamma:(-1,1) \rightarrow M$ a geodesic through $\gamma(0)=p$
- $(M, p, \lambda d) \xrightarrow{G H}\left(G, e, d_{G}\right)$ as $\lambda \rightarrow \infty$
- $f_{\lambda, r, \epsilon}: B(p, r / \lambda) \rightarrow G$ Gromov-Hausdorff approximations

Metric tangents to geodesics

- (M, d) a sub-Riemannian manifold
- $p \in M$ a basepoint
- $\gamma:(-1,1) \rightarrow M$ a geodesic through $\gamma(0)=p$
- $(M, p, \lambda d) \xrightarrow{G H}\left(G, e, d_{G}\right)$ as $\lambda \rightarrow \infty$
- $f_{\lambda, r, \epsilon}: B(p, r / \lambda) \rightarrow G$ Gromov-Hausdorff approximations

$$
=B_{\lambda d}(p, r)
$$

Metric tangents to geodesics

- (M, d) a sub-Riemannian manifold
- $p \in M$ a basepoint
- $\gamma:(-1,1) \rightarrow M$ a geodesic through $\gamma(0)=p$
- $(M, p, \lambda d) \xrightarrow{G H}\left(G, e, d_{G}\right)$ as $\lambda \rightarrow \infty$
- $f_{\lambda, r, \epsilon}: B(p, r / \lambda) \rightarrow G$ Gromov-Hausdorff approximations
$f_{\lambda, r, \epsilon}(\gamma)$ may not approximate a curve $\sigma: \mathbb{R} \rightarrow G$ as $\lambda \rightarrow \infty$.

Metric tangents to geodesics

- (M, d) a sub-Riemannian manifold
- $p \in M$ a basepoint
- $\gamma:(-1,1) \rightarrow M$ a geodesic through $\gamma(0)=p$
- $(M, p, \lambda d) \xrightarrow{G H}\left(G, e, d_{G}\right)$ as $\lambda \rightarrow \infty$
- $f_{\lambda, r, \epsilon}: B(p, r / \lambda) \rightarrow G$ Gromov-Hausdorff approximations
$f_{\lambda, r, \epsilon}(\gamma)$ may not approximate a curve $\sigma: \mathbb{R} \rightarrow G$ as $\lambda \rightarrow \infty$.
$\exists \sigma \Longleftrightarrow \gamma$ differentiable at 0 .

Metric tangents to geodesics

- (M, d) a sub-Riemannian manifold
- $p \in M$ a basepoint
- $\gamma:(-1,1) \rightarrow M$ a geodesic through $\gamma(0)=p$
- $(M, p, \lambda d) \xrightarrow{G H}\left(G, e, d_{G}\right)$ as $\lambda \rightarrow \infty$
- $f_{\lambda, r, \epsilon}: B(p, r / \lambda) \rightarrow G$ Gromov-Hausdorff approximations
$f_{\lambda, r, \epsilon}(\gamma)$ may not approximate a curve $\sigma: \mathbb{R} \rightarrow G$ as $\lambda \rightarrow \infty$.
$\exists \sigma \Longleftrightarrow \gamma$ differentiable at 0 .
Arzela-Ascoli $\Longrightarrow \exists \sigma$ up to a subsequence $\lambda_{k} \rightarrow \infty$

Metric tangents to geodesics

- (M, d) a sub-Riemannian manifold
- $p \in M$ a basepoint
- $\gamma:(-1,1) \rightarrow M$ a geodesic through $\gamma(0)=p$
- $(M, p, \lambda d) \xrightarrow{G H}\left(G, e, d_{G}\right)$ as $\lambda \rightarrow \infty$
- $f_{\lambda, r, \epsilon}: B(p, r / \lambda) \rightarrow G$ Gromov-Hausdorff approximations
$f_{\lambda, r, \epsilon}(\gamma)$ may not approximate a curve $\sigma: \mathbb{R} \rightarrow G$ as $\lambda \rightarrow \infty$.
$\exists \sigma \Longleftrightarrow \gamma$ differentiable at 0 .
Arzela-Ascoli $\Longrightarrow \exists \sigma$ up to a subsequence $\lambda_{k} \rightarrow \infty$

Definition

$\operatorname{Tan}(\gamma, 0)=\left\{\sigma:\left(\gamma, \gamma(0), \lambda_{k} d\right) \xrightarrow{G H}\left(\sigma, \sigma(0), d_{G}\right), \lambda_{k} \rightarrow \infty\right\}$

Metric tangents to geodesics

Immediate consequences:
Lemma
γ geodesic \Longrightarrow every $\sigma \in \operatorname{Tan}(\gamma, 0)$ is a geodesic

Lemma

$\operatorname{Tan}(\operatorname{Tan}(\gamma, t), 0) \subset \operatorname{Tan}(\gamma, t)$.

Metric tangents to geodesics

Immediate consequences:
Lemma
γ geodesic \Longrightarrow every $\sigma \in \operatorname{Tan}(\gamma, 0)$ is a geodesic
Proof: $f_{\lambda, r, \epsilon}$ are ϵ-quasi-isometries.

Lemma

$\operatorname{Tan}(\operatorname{Tan}(\gamma, t), 0) \subset \operatorname{Tan}(\gamma, t)$.
Proof: a diagonal argument.

Metric tangents in Carnot groups

- M sub-Riemannian manifold
- $(M, p, \lambda d) \xrightarrow{G H}\left(G, e, d_{G}\right)$
- $\gamma:(-1,1) \rightarrow M, \gamma(0)=p$
- $\sigma: \mathbb{R} \rightarrow G, \sigma(0)=e$

Gromov-Hausdorff convergence $(\gamma, \gamma(0), \lambda d) \xrightarrow{G H}\left(\sigma, \sigma(0), d_{G}\right)$

Metric tangents in Carnot groups

- M sub-Riemannian manifold
- $(M, p, \lambda d) \xrightarrow{G H}\left(G, e, d_{G}\right)$
- $\gamma:(-1,1) \rightarrow M, \gamma(0)=p$
- $\sigma: \mathbb{R} \rightarrow G, \sigma(0)=e$

Gromov-Hausdorff convergence $(\gamma, \gamma(0), \lambda d) \xrightarrow{G H}\left(\sigma, \sigma(0), d_{G}\right)$

- G sub-Riemannian Carnot group
- (G, e, d) and $(G, e, \lambda d)$ are isometric by dilation $\delta_{\lambda}: G \rightarrow G$ $\Longrightarrow(G, e, \lambda d) \xrightarrow{G H}(G, e, d)$
$\gamma_{\lambda} \rightarrow \sigma$ uniformly on compact sets, where

$$
\gamma_{\lambda}:(-\lambda, \lambda) \rightarrow G, \quad \gamma_{\lambda}(t)=\delta_{\lambda}(\gamma(t / \lambda))
$$

Metric tangents to geodesics

- $\mathfrak{g}=\mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad\left[\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}\right]=\mathfrak{g}^{[i+1]}$
- $G=\exp (\mathfrak{g})$ a Carnot group
- $\pi_{s}: G \rightarrow G / \exp \left(\mathfrak{g}^{[s]}\right)$ the quotient projection down one step

Theorem (H. and Le Donne 2018)

$\gamma:(-1,1) \rightarrow G$ geodesic and $\sigma \in \operatorname{Tan}(\gamma, 0)$.
Then $\pi_{s} \circ \sigma: \mathbb{R} \rightarrow G / \exp \left(V_{s}\right)$ is also a geodesic.

Metric tangents to geodesics

- $\mathfrak{g}=\mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad\left[\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}\right]=\mathfrak{g}^{[i+1]}$
- $G=\exp (\mathfrak{g})$ a Carnot group
- $\pi_{s}: G \rightarrow G / \exp \left(\mathfrak{g}^{[s]}\right)$ the quotient projection down one step

Theorem (H. and Le Donne 2018)

$\gamma:(-1,1) \rightarrow G$ geodesic and $\sigma \in \operatorname{Tan}(\gamma, 0)$.
Then $\pi_{s} \circ \sigma: \mathbb{R} \rightarrow G / \exp \left(V_{s}\right)$ is also a geodesic.

Corollary

$\gamma:(-1,1) \rightarrow G$ geodesic and
$\sigma \in \operatorname{Tan}^{s}(\gamma, 0)=\operatorname{Tan}(\operatorname{Tan}(\cdots \operatorname{Tan}(\gamma, 0), \cdots, 0), 0)$.
Then $\pi \circ \sigma: \mathbb{R} \rightarrow \mathbb{R}^{\operatorname{dim}} \mathfrak{g}^{[1]}$ is a geodesic.
That is, $\sigma(t)=\exp (t X)$ for some $X \in \mathfrak{g}^{[1]}$.

Large scale behaviour of geodesics

- G a Carnot group
- $r=\operatorname{dim} \mathfrak{g}^{[1]}$
- $\pi: G \rightarrow \mathbb{R}^{r}$ the horizontal projection

Theorem (H. and Le Donne 2018)

$\sigma: \mathbb{R} \rightarrow G$ a geodesic.
\exists a hyperplane $W \subset \mathbb{R}^{r}$ and $\exists R>0$ such that $\pi \circ \gamma(\mathbb{R}) \subset B(W, R)$.

The cut \& correct method

A non-minimality proof strategy (Leonardi and Monti 2008):
(1) The cut: replace $\left.\sigma\right|_{[a, b]}$ with the lift of a geodesic from a lower step Carnot group
(2) The correction: perturb the curve so that

- the endpoint is reverted to the original endpoint, and
- length remains smaller than the original curve's

The cut \& correct method - discretization

- Choose points g_{1}, \ldots, g_{m} along the geodesic σ
- Write the endpoint of σ as

$$
\begin{aligned}
\sigma(1) & =\sigma(0) \cdot \sigma(0)^{-1} \cdot g_{1} \cdot g_{1}^{-1} \cdot g_{2} \cdots g_{m-1}^{-1} \cdot g_{m} \cdot g_{m}^{-1} \cdot \sigma(1) \\
& =\sigma(0) \cdot\left(\sigma(0)^{-1} \cdot g_{1}\right) \cdot\left(g_{1}^{-1} \cdot g_{2}\right) \cdots\left(g_{m-1}^{-1} \cdot g_{m}\right) \cdot\left(g_{m}^{-1} \cdot \sigma(1)\right)
\end{aligned}
$$

The cut \& correct method - discretization

- Choose points g_{1}, \ldots, g_{m} along the geodesic σ
- Write the endpoint of σ as

$$
\begin{aligned}
\sigma(1) & =\sigma(0) \cdot \sigma(0)^{-1} \cdot g_{1} \cdot g_{1}^{-1} \cdot g_{2} \cdots g_{m-1}^{-1} \cdot g_{m} \cdot g_{m}^{-1} \cdot \sigma(1) \\
& =\sigma(0) \cdot\left(\sigma(0)^{-1} \cdot g_{1}\right) \cdot\left(g_{1}^{-1} \cdot g_{2}\right) \cdots\left(g_{m-1}^{-1} \cdot g_{m}\right) \cdot\left(g_{m}^{-1} \cdot \sigma(1)\right)
\end{aligned}
$$

- Easy to insert a perturbation curve $\alpha:[0,1] \rightarrow G$:

$$
\tilde{\sigma}(1)=\sigma(0) \cdot\left(\sigma(0)^{-1} \cdot g_{1}\right) \cdot\left(\alpha(0)^{-1} \cdot \alpha(1)\right) \cdot\left(g_{1}^{-1} \cdot g_{2}\right) \cdots
$$

- Perturbed points: $\tilde{g}_{k}=g_{1} \cdot \alpha(0)^{-1} \cdot \alpha(1) \cdot g_{1}^{-1} \cdot g_{k}$

The cut \& correct method - the cut

Lifting a geodesic from a lower step group in the discretization:

Lemma

$\forall g \in G \quad \exists h \in \exp \left(\mathfrak{g}^{[s]}\right):$

$$
d_{G / \exp \left(\mathfrak{g}^{[s]}\right)}\left(e, \pi_{s}(g)\right)=d_{G}(e, h g) .
$$

The cut \& correct method - the cut

Lifting a geodesic from a lower step group in the discretization:

Lemma

$$
\begin{aligned}
& \forall g \in G \quad \exists h \in \exp \left(\mathfrak{g}^{[s]}\right): \\
& d_{G / \exp \left(\mathfrak{g}^{[s]}\right)}\left(e, \pi_{s}(g)\right)=d_{G}(e, h g) .
\end{aligned}
$$

After replacing $\left.\sigma\right|_{[a, b]}$ with a geodesic segment from $G / \exp \left(\mathfrak{g}^{[s]}\right)$, either
(1) length decreases and the endpoint is translated by $h \in \exp \left(\mathfrak{g}^{[s]}\right)$, or
(2) length does not change, so $\left.\pi_{s} \circ \sigma\right|_{[a, b]}$ was already a geodesic

The cut \& correct method - the correction

(1) Choose $r+1$ points g_{0}, \ldots, g_{r} along the curve γ.
(2) For each curve segment g_{k-1} to g_{k}, insert α_{k} at g_{k-1}, and insert the reverse α_{k}^{-1} at g_{k}.

The cut \& correct method - the correction

(1) Choose $r+1$ points g_{0}, \ldots, g_{r} along the curve γ.
(2) For each curve segment g_{k-1} to g_{k}, insert α_{k} at g_{k-1}, and insert the reverse α_{k}^{-1} at g_{k}.

The cut \& correct method - the correction

(1) Choose $r+1$ points g_{0}, \ldots, g_{r} along the curve γ.
(2) For each curve segment g_{k-1} to g_{k}, insert α_{k} at g_{k-1}, and insert the reverse α_{k}^{-1} at g_{k}.

The cut \& correct method - the correction

A back-and-forth perturbation is a group commutator:

$$
a \alpha a^{-1} \cdot b \alpha^{-1} b=a\left[\alpha, a^{-1} b\right] a^{-1}
$$

\Longrightarrow Perturbation in the layer s-1 corrects an error in layer s.

The cut \& correct method - the correction

A back-and-forth perturbation is a group commutator:

$$
a \alpha a^{-1} \cdot b \alpha^{-1} b=a\left[\alpha, a^{-1} b\right] a^{-1}
$$

\Longrightarrow Perturbation in the layer s-1 corrects an error in layer s.
Need to solve

$$
L\left(\alpha_{1}, \ldots, \alpha_{r}\right)=\log h \in \mathfrak{g}^{[s]}
$$

where $L:\left(\mathfrak{g}^{[s-1]}\right)^{r} \rightarrow \mathfrak{g}^{[s]}$ is linear.

The cut \& correct method - the correction

A back-and-forth perturbation is a group commutator:

$$
a \alpha a^{-1} \cdot b \alpha^{-1} b=a\left[\alpha, a^{-1} b\right] a^{-1}
$$

\Longrightarrow Perturbation in the layer s-1 corrects an error in layer s.
Need to solve

$$
L\left(\alpha_{1}, \ldots, \alpha_{r}\right)=\log h \in \mathfrak{g}^{[s]}
$$

where $L:\left(\mathfrak{g}^{[s-1]}\right)^{r} \rightarrow \mathfrak{g}^{[s]}$ is linear.
Key ingredients:

- bracket-generating $\Longrightarrow L$ is surjective
- norm of the right-inverse of L is controlled by the horizontal projection of g_{0}, \ldots, g_{r}

Part II: Abnormal dynamics

Recall

- G a Carnot group of rank r
- X_{1}, \ldots, X_{r} orthonormal left-invariant frame
- $u \in[0,1] \rightarrow \mathbb{R}^{r}, \gamma_{u}:[0,1] \rightarrow G$
$\dot{\gamma}_{u}(t)=\sum u_{i}(t) X_{i}\left(\gamma_{u}(t)\right)$
$\gamma_{u}(0)=p$
- γ_{u} abnormal $\Longleftrightarrow u$ critical point of $u \mapsto \gamma_{u}(1)$

Characterization of abnormal curves

$\gamma_{u}:[0,1] \rightarrow M$ abnormal $\Longleftrightarrow \lambda$ is a characteristic curve of the symplectic form restricted to Δ^{\perp} (Hsu 1992)

Characterization of abnormal curves

$T^{*} G \simeq G \times \mathfrak{g}^{*}$ by right-trivialization

$\gamma_{u}:[0,1] \rightarrow M$ abnormal $\Longleftrightarrow \lambda \in \mathfrak{g}^{*}$ constant with

$$
\lambda\left(\operatorname{Ad}_{\gamma_{u}(t)} \mathfrak{g}^{[1]}\right)=0
$$

Ad: $G \rightarrow \operatorname{GL}(\mathfrak{g}), \quad \operatorname{Ad}_{\gamma} X=\left.\frac{d}{d s} \gamma \cdot \exp (s X) \cdot \gamma^{-1}\right|_{s=0}$

Characterization of abnormal curves

For $X \in \mathfrak{g}^{[1]}$, define the abnormal polynomial

$$
P_{X}: G \rightarrow \mathbb{R}, \quad P_{X}(g)=\lambda\left(\operatorname{Ad}_{g} X\right)
$$

- γ abnormal $\Longleftrightarrow P_{X}(\gamma(t))=0$ for all $X \in \mathfrak{g}^{[1]}$.

Characterization of abnormal curves

For $X \in \mathfrak{g}^{[1]}$, define the abnormal polynomial

$$
P_{X}: G \rightarrow \mathbb{R}, \quad P_{X}(g)=\lambda\left(\operatorname{Ad}_{g} X\right)
$$

- γ abnormal $\Longleftrightarrow P_{X}(\gamma(t))=0$ for all $X \in \mathfrak{g}^{[1]}$.

Abnormal dynamics: consider the (singular) foliation tangent to $\Delta \cap T\left\{P_{X}=0\right\}$.

A dynamical approach

Rank 2: for $P=P_{X}$

$$
0=\frac{d}{d t} P\left(\gamma_{u}(t)\right)=u_{1}(t) X_{1} P\left(\gamma_{u}(t)\right)+u_{2}(t) X_{2} P\left(\gamma_{u}(t)\right)
$$

A dynamical approach

Rank 2: for $P=P_{X}$

$$
0=\frac{d}{d t} P\left(\gamma_{u}(t)\right)=u_{1}(t) X_{1} P\left(\gamma_{u}(t)\right)+u_{2}(t) X_{2} P\left(\gamma_{u}(t)\right)
$$

When $\left(X_{1} P, X_{2} P\right) \neq 0$, up to reparametrization

$$
\begin{aligned}
& u_{1}(t)=-X_{2} P\left(\gamma_{u}(t)\right) \\
& u_{2}(t)=X_{1} P\left(\gamma_{u}(t)\right)
\end{aligned}
$$

\Longrightarrow ODE for γ_{u}.

A dynamical approach

Theorem (Barilari, Chitour, Jean, Prandi, and Sigalotti 2020)

In sub-Riemannian manifolds of rank 2 and step 4, abnormal minimizers have C^{1} regularity.

Theorem (Boarotto and Vittone 2020)

In Carnot groups of rank 3 step 3, or rank 2 step 4, the abnormal set is a sub-analytic set of codimension at least one.

Proof strategy:
(1) The dynamics is linear.
(2) Separate cases by the Jordan form of the linear part.
(3) Study the dynamics explicitly in the normal forms.

Abnormal dynamics is complicated

Theorem (H. 2020)

Let $\dot{x}=P(x)$ be a polynomial ODE system in \mathbb{R}^{r}.
There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

For $x=\left(x_{1}, \ldots, x_{r}\right)$, a lift is γ_{u} where $u_{i}=\dot{x}_{i}$.

Abnormal dynamics is complicated

Theorem (H. 2020)

Let $\dot{x}=P(x)$ be a polynomial ODE system in \mathbb{R}^{r}.
There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

For $x=\left(x_{1}, \ldots, x_{r}\right)$, a lift is γ_{u} where $u_{i}=\dot{x}_{i}$.
Proof idea:
(1) Every polynomial ODE has a polynomial first integral in a lift.
(2) Curves contained in an algebraic variety are abnormal in a lift.

Construction of a first integral

Theorem (H. 2020)

Let $\dot{x}=P(x)$ be a polynomial ODE system in \mathbb{R}^{r}.
There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

For $x=\left(x_{1}, \ldots, x_{r}\right)$, a lift is γ_{u} where $u_{i}=\dot{x}_{i}$.
Proof idea:
(1) Every polynomial ODE has a polynomial first integral in a lift.
(2) Curves contained in an algebraic variety are abnormal in a lift.

Horizontal gradients

Lemma

Every polynomial vector field $P: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ is the horizontal gradient of some polynomial in a Carnot group of high enough step.

Horizontal gradients

Lemma

Every polynomial vector field $P: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ is the horizontal gradient of some polynomial in a Carnot group of high enough step.

For the frame X_{1}, \ldots, X_{r} the horizontal gradient of $Q: G \rightarrow \mathbb{R}$ is

$$
\nabla_{\mathrm{hor}} Q=\sum\left(X_{i} Q\right) X_{i}: G \rightarrow T G
$$

Horizontal gradients

Lemma

Every polynomial vector field $P: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ is the horizontal gradient of some polynomial in a Carnot group of high enough step.

For the frame X_{1}, \ldots, X_{r} the horizontal gradient of $Q: G \rightarrow \mathbb{R}$ is

$$
\nabla_{\mathrm{hor}} Q=\sum\left(X_{i} Q\right) X_{i}: G \rightarrow T G
$$

In coordinates, lift $P: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ to the horizontal vector field

$$
P: G \rightarrow T G, \quad P\left(x_{1}, \ldots, x_{r}, \ldots, x_{n}\right)=\sum_{i=1}^{r} P_{i}\left(x_{1}, \ldots, x_{r}\right) X_{i}(x)
$$

Gradients in \mathbb{R}^{r}

$$
P=\left(P_{1}, \ldots, P_{r}\right)=\nabla Q \text { for some } Q: \mathbb{R}^{r} \rightarrow \mathbb{R} \Longleftrightarrow \partial_{i} P_{j}=\partial_{j} P_{i}
$$

Gradients in \mathbb{R}^{r}

$P=\left(P_{1}, \ldots, P_{r}\right)=\nabla Q$ for some $Q: \mathbb{R}^{r} \rightarrow \mathbb{R} \Longleftrightarrow \partial_{i} P_{j}=\partial_{j} P_{i}$
Recursion for Q :

$$
\begin{aligned}
Q_{1} & =\int P_{1} d x_{1} \\
Q_{2} & =Q_{1}+\int\left(P_{2}-\partial_{2} Q_{1}\right) d x_{2} \\
& \vdots \\
Q=Q_{r} & =Q_{r-1}+\int\left(P_{r}-\partial_{r} Q_{r-1}\right) d x_{r}
\end{aligned}
$$

A non-gradient vector field in \mathbb{R}^{r}

$$
P(x)=\left(x_{1}-x_{2}, x_{1}+x_{2}\right) \neq \nabla Q \text { for any } Q: \mathbb{R}^{2} \rightarrow \mathbb{R} .
$$

A non-gradient vector field in \mathbb{R}^{r}

$$
P(x)=\left(x_{1}-x_{2}, x_{1}+x_{2}\right) \neq \nabla Q \text { for any } Q: \mathbb{R}^{2} \rightarrow \mathbb{R} .
$$

Lift to a horizontal vector field in the Heisenberg group.

$$
\begin{aligned}
& X_{1}(x)=\partial_{1} \\
& X_{2}(x)=\partial_{2}+x_{1} \partial_{3} \\
& X_{3}(x)=\left[X_{1}, X_{2}\right](x)=\partial_{3} \\
& P: H \rightarrow T H, \quad P(x)=\left(x_{1}-x_{2}\right) X_{1}(x)+\left(x_{1}+x_{2}\right) X_{2}(x)
\end{aligned}
$$

A non-gradient vector field in \mathbb{R}^{r}

$$
P(x)=\left(x_{1}-x_{2}, x_{1}+x_{2}\right) \neq \nabla Q \text { for any } Q: \mathbb{R}^{2} \rightarrow \mathbb{R} .
$$

Lift to a horizontal vector field in the Heisenberg group.

$$
\begin{aligned}
& X_{1}(x)=\partial_{1} \\
& X_{2}(x)=\partial_{2}+x_{1} \partial_{3} \\
& X_{3}(x)=\left[X_{1}, X_{2}\right](x)=\partial_{3} \\
& P: H \rightarrow T H, \quad P(x)=\left(x_{1}-x_{2}\right) X_{1}(x)+\left(x_{1}+x_{2}\right) X_{2}(x)
\end{aligned}
$$

Then $P=\nabla_{\text {hor }} Q$ for the polynomial

$$
Q(x)=\frac{1}{2} x_{1}^{2}-x_{1} x_{2}+\frac{1}{2} x_{2}^{2}+2 x_{3}
$$

Recursion for horizontal gradient integration

$$
\begin{aligned}
& X_{1} Q=x_{1}-x_{2} \\
& X_{2} Q=x_{1}+x_{2}
\end{aligned}
$$

Recursion for horizontal gradient integration

$$
\begin{aligned}
& X_{1} Q=x_{1}-x_{2} \\
& x_{2} Q=x_{1}+x_{2}
\end{aligned}
$$

Compute commutators:

$$
X_{3} Q=\left[X_{1}, X_{2}\right] Q=X_{1}\left(X_{2} Q\right)-X_{2}\left(X_{1} Q\right)=2
$$

Recursion for horizontal gradient integration

$$
\begin{aligned}
& X_{1} Q=x_{1}-x_{2} \\
& X_{2} Q=x_{1}+x_{2}
\end{aligned}
$$

Compute commutators:

$$
X_{3} Q=\left[X_{1}, X_{2}\right] Q=X_{1}\left(X_{2} Q\right)-X_{2}\left(X_{1} Q\right)=2
$$

Integrate backwards:

$$
\begin{aligned}
Q_{3} & =\int x_{3} Q d x_{3} \\
Q_{2} & =Q_{3}+\int\left(x_{2} Q-x_{2} Q_{3}\right) d x_{2} \\
Q=Q_{1} & =Q_{2}+\int\left(X_{1} Q-X_{1} Q_{2}\right) d x_{1} \\
& =\frac{1}{2} x_{1}^{2}-x_{1} x_{2}+\frac{1}{2} x_{2}^{2}+2 x_{3}
\end{aligned}
$$

Recursion for horizontal gradient integration

Why it works:

- As weighted differential operators, $\left[X_{1}, X_{2}\right]$ is a degree 2 operator, $\left[X_{1},\left[X_{1}, X_{2}\right]\right]$ is degree 3 , etc.
\Longrightarrow partial derivatives of a polynomial eventually vanish
- There exist coordinates such that $X_{i}=\partial_{i}+\sum_{j>i} c_{i j} \partial_{j}$.
\Longrightarrow integration variable by variable is possible

A horizontal first integral

For an ODE

$$
\dot{x}_{i}=P_{i}(x), \quad x \in \mathbb{R}^{r}, \quad i=1, \ldots, n
$$

integrate any nonzero orthogonal vector field.

A horizontal first integral

For an ODE

$$
\dot{x}_{i}=P_{i}(x), \quad x \in \mathbb{R}^{r}, \quad i=1, \ldots, n
$$

integrate any nonzero orthogonal vector field.
E.g. if $P_{1} \neq 0$, integrate

$$
X_{1} Q=-P_{2}, \quad X_{2} Q=P_{1} \quad X_{3} Q=X_{4} Q=\cdots=X_{r} Q=0 .
$$

A horizontal first integral

For an ODE

$$
\dot{x}_{i}=P_{i}(x), \quad x \in \mathbb{R}^{r}, \quad i=1, \ldots, n
$$

integrate any nonzero orthogonal vector field.
E.g. if $P_{1} \neq 0$, integrate

$$
X_{1} Q=-P_{2}, \quad X_{2} Q=P_{1} \quad X_{3} Q=X_{4} Q=\cdots=X_{r} Q=0 .
$$

Then for a trajectory $x:[0,1] \rightarrow G$ of $\dot{x}=\sum P_{i}(x) X_{i}(x)$

$$
\frac{d}{d t} Q(x)=P_{1}(x) X_{1} Q(x)+\cdots+P_{r}(x) X_{r} Q(x)=0 .
$$

Abnormal factors

Theorem (H. 2020)

Let $\dot{x}=P(x)$ be a polynomial ODE system in \mathbb{R}^{r}.
There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

Proof idea:
(1) Every polynomial ODE has a polynomial first integral in a lift.
(2) Curves contained in an algebraic variety are abnormal in a lift.

Higher order abnormality

$$
\mathfrak{g}=\mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad\left[\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}\right]=\mathfrak{g}^{[i+1]}
$$

Definition

$\gamma:[0,1] \rightarrow G$ abnormal $\Longleftrightarrow \lambda\left(\operatorname{Ad}_{\gamma(t)} \mathfrak{g}^{[1]}\right)=0$

Higher order abnormality

$$
\mathfrak{g}=\mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[s]}, \quad\left[\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}\right]=\mathfrak{g}^{[i+1]}
$$

Definition

$\gamma:[0,1] \rightarrow G$ abnormal $\Longleftrightarrow \lambda\left(\operatorname{Ad}_{\gamma(t)} \mathfrak{g}^{[1]}\right)=0$

Definition

γ abnormal of order $k \Longleftrightarrow \lambda\left(\operatorname{Ad}_{\gamma(t)}\left(\mathfrak{g}^{[1]} \oplus \cdots \oplus \mathfrak{g}^{[k]}\right)\right)=0$

Higher order abnormality

$$
\mathfrak{g}=\mathfrak{g}^{[1]} \oplus \mathfrak{g}^{[2]} \oplus \cdots \oplus \mathfrak{g}^{[5]}, \quad\left[\mathfrak{g}^{[1]}, \mathfrak{g}^{[i]}\right]=\mathfrak{g}^{[i+1]} .
$$

Definition

$\gamma:[0,1] \rightarrow G$ abnormal $\Longleftrightarrow \lambda\left(\operatorname{Ad}_{\gamma(t)} \mathfrak{g}^{[1]}\right)=0$

Definition

γ abnormal of order $k \Longleftrightarrow \lambda\left(\operatorname{Ad}_{\gamma(t)}\left(\mathfrak{g}^{[1]} \oplus \cdots \oplus \mathfrak{g}^{[k]}\right)\right)=0$
Lemma
If $\gamma(0)=e$ and $\lambda\left(\operatorname{Ad}_{\gamma(t)} \mathfrak{g}^{[k]}\right)=0$, then γ is abnormal of order k.

Abnormal factors

Proposition

For any polynomial $Q: H \rightarrow \mathbb{R}$, there exists

- a Carnot group G with a projection $\pi: G \rightarrow H$
- $\lambda \in \mathfrak{g}^{*}$
- $k \in \mathbb{N}$
such that $Q \circ \pi: G \rightarrow \mathbb{R}$ is a factor of the polynomial $x \mapsto \lambda\left(\operatorname{Ad}_{x} Y\right)$ for every $Y \in \mathfrak{g}^{[k]}$.

Abnormal factors proof

Consider a linear system

$$
P_{i}^{\lambda}=Q \cdot S_{i}^{\nu}, \quad i=1, \ldots, m
$$

in the variables (λ, ν)

Abnormal factors proof

Consider a linear system

$$
P_{i}^{\lambda}=Q \cdot S_{i}^{\nu}, \quad i=1, \ldots, m
$$

in the variables (λ, ν), where

- $P_{i}^{\lambda}(x)=\lambda\left(\operatorname{Ad}_{x} Y_{i}\right)$ for a basis Y_{1}, \ldots, Y_{m} of $\mathfrak{g}^{[k]}$
- S_{i}^{ν} are generic polynomials of the form

$$
S^{\nu}=\nu_{0}+\nu_{1} x_{1}+\nu_{2} x_{2}+\nu_{3} x_{3}+\nu_{4} x_{1}^{2}+\nu_{5} x_{1} x_{2}+\nu_{6} x_{2}^{2}+\ldots
$$

such that $\operatorname{deg}\left(S_{i}^{\nu}\right)+\operatorname{deg}(Q)=\operatorname{deg}\left(P_{i}\right)$.

Abnormal factors proof

Let

- $k=\operatorname{deg} Q+1$
- G_{s} a free Carnot group of step s

Lemma

The linear system

$$
P_{i}^{\lambda}=Q \cdot S_{i}^{\nu}, \quad i=1, \ldots, m
$$

has a non-trivial solution (λ, ν) in G_{s} for large s.

Monomial counting

Proof of Lemma:

(1) Hall basis argument $\Longrightarrow \exists \lambda=\lambda(\nu)$ such that $P_{1}^{\lambda(\nu)}=Q \cdot S_{1}^{\nu}$ Consider the remaining system

$$
P_{i}^{\lambda(\nu)}=Q \cdot S_{i}^{\nu}, \quad i=2, \ldots, m
$$

Monomial counting

Proof of Lemma:

(1) Hall basis argument $\Longrightarrow \exists \lambda=\lambda(\nu)$ such that $P_{1}^{\lambda(\nu)}=Q \cdot S_{1}^{\nu}$

Consider the remaining system

$$
P_{i}^{\lambda(\nu)}=Q \cdot S_{i}^{\nu}, \quad i=2, \ldots, m
$$

(2) In step $s, \operatorname{deg}\left(P_{i}^{\lambda}\right) \leq s-k$. The number of equations is

$$
(m-1) \cdot \#\{\text { monomials of degree up to } s-k\}
$$

and the number of variables is

$$
m \cdot \#\{\text { monomials of degree up to } s-k-\operatorname{deg}(Q)\}
$$

Monomial counting

Proof of Lemma:

(1) Hall basis argument $\Longrightarrow \exists \lambda=\lambda(\nu)$ such that $P_{1}^{\lambda(\nu)}=Q \cdot S_{1}^{\nu}$

Consider the remaining system

$$
P_{i}^{\lambda(\nu)}=Q \cdot S_{i}^{\nu}, \quad i=2, \ldots, m
$$

(2) In step $s, \operatorname{deg}\left(P_{i}^{\lambda}\right) \leq s-k$. The number of equations is

$$
(m-1) \cdot \#\{\text { monomials of degree up to } s-k\}
$$

and the number of variables is
$m \cdot \#\{$ monomials of degree up to $s-k-\operatorname{deg}(Q)\}$
(3) Poincaré series asymptotics for $s \rightarrow \infty$
\Longrightarrow \#variables \gg \#equations.

The entire proof

Theorem (H. 2020)

Let $\dot{x}=P(x)$ be a polynomial ODE system in \mathbb{R}^{r}.
There exists a Carnot group of rank r such that all trajectories of the ODE lift to abnormal curves.

Proof:
(1) Every polynomial ODE has a polynomial first integral in a lift.

- Consider an orthogonal vector field.
- Every polynomial vector field is a horizontal gradient.
(2) Curves contained in an algebraic variety are abnormal in a lift.
- Common factors of abnormal polynomials = linear system.
- Monomial counting \Longrightarrow the system is underdetermined.

Abnormals from linear ODEs

Abnormals in the free Carnot group of rank 2 and step 7

$$
\begin{aligned}
& \dot{x}=x \\
& \dot{y}=y
\end{aligned}
$$

$$
\dot{x}=-\frac{1}{4} x-y
$$

$$
\dot{x}=x
$$

$$
\dot{y}=x-\frac{1}{4} y
$$

$$
\dot{y}=2 y
$$

Abnormals from linear ODEs

Abnormals in the free Carnot group of rank 2 and step 7

$$
\begin{aligned}
& \dot{x}=x \\
& \dot{y}=y
\end{aligned}
$$

$\dot{x}=-\frac{1}{4} x-y$
$\dot{y}=x-\frac{1}{4} y$

$\dot{x}=x$
$\dot{y}=2 y$
$\exists \lambda: \mathbb{R}^{6} \rightarrow \mathfrak{g}^{*}$ semi-algebraic such that trajectories of

$$
\dot{x}=a x+b y+c \quad \dot{y}=d x+e y+f
$$

are abnormal with covector $\lambda(a, b, c, d, e, f)$.

Abnormals from quadratic ODEs

Abnormals in the free Carnot group of rank 2 and step 13

Abnormals from quadratic ODEs

Abnormals in the free Carnot group of rank 2 and step 13

Let $E \subset[0,1]$ be nowhere dense. \exists abnormal curve that is

- injective
- parametrized by arc length on $[0,1] \backslash E$
- not C^{2} at any point $x \in E$
- if E is perfect, not C^{1} at any point $x \in E$

Thank you for your attention!

