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Sub-Riemannian manifolds

A sub-Riemannian manifold consists of

@ a smooth manifold M

@ a bracket-generating distribution A C TM

@ a smoothly varying inner product on A
Assume (for simplicity):

@ A has a global orthonormal frame Xi,..., X,

@ the vector fields Xi, ..., X, are complete
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The endpoint map

Fix a base point p € M.

Definition (Endpoint map)

The endpoint map is the map
End: L2([0,1;R") = M, u s v,(1),
where 7,: [0,1] — M is the curve

Fu(t) =) ui(£)Xi(u(t))
7u(0) = p

Assumptions = endpoint map well defined and surjective.
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The endpoint map

Abnormal < critical points and values of the endpoint map.

Abnormal control = critical point u € L2 of the endpoint map
Abnormal curve = integral curve v, of an abnormal control u

Abnormal set = the set of critical values of the endpoint map
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The endpoint map

Abnormal < critical points and values of the endpoint map.

Abnormal control = critical point u € L2 of the endpoint map
Abnormal curve = integral curve v, of an abnormal control u

Abnormal set = the set of critical values of the endpoint map
= the subset of M that can be reached from the
basepoint with an abnormal curve.
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Open problems

Conjecture (Sard)

The abnormal set has zero measure.

Conjecture (Regularity)

All length-minimizing curves are smooth.
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Open problems

Conjecture (Sard)

The abnormal set has zero measure.

Conjecture (Regularity)

All length-minimizing curves are smooth.

The two types of length-minimizing curves.
@ normal: satisfy a geodesic equation = are smooth

@ abnormal: unknown regularity
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Some regularity results

o

Strichartz 1986: C°-regularity for strongly bracket generating
structures

H. and Le Donne 2016: geodesics do not have corner-type
singularities

Monti, Pigati, and Vittone 2018: existence of tangent lines
Belotto da Silva, Figalli, Parusinski, and Rifford 2018:

Cl-regularity for 3-dimensional analytic sub-Riemannian
manifolds

Barilari, Chitour, Jean, Prandi, and Sigalotti 2020:
Cl-regularity for rank 2 step 4 sub-Riemannian structures
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Some Sard results

Assume the sub-Riemannian structure is analytic.
Then the abnormal set is ...
@ ...contained in a closed nowhere dense set (Agrachév 2009)
@ ...a countable union of semianalytic curves in the case of
3d-manifolds (Belotto da Silva, Figalli, Parusiniski, and Rifford
2018)
@ ...a proper algebraic subvariety in Carnot groups of step 2, in
[F5 4 (free Carnot group of rank 2 step 4), and in F33
(Le Donne, Montgomery, Ottazzi, Pansu, and Vittone 2016)
@ ...a proper sub-analytic subvariety in Carnot groups of rank 3
step 3, and in rank 2 step 4 (Boarotto and Vittone 2020)



Introduction
[eIeeTolote] }

Carnot groups

@ a Carnot group G: a nilpotent Lie group whose Lie algebra is
stratified

@ The basepoint p is the identity element e.
o A is the left-invariant distribution with A, = gll.

@ The orthonormal frame Xi, ..., X, is left-invariant.
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Part |: The metric approach J
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Gromov-Hausdorff convergence

e (Z,d) a metric space
e X1, CZ

Definition (Hausdorff distance)

dH(Xl,Xz) = inf{r >0: X1 C B(XQ, I’) and X5 C B(Xl, r)}
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Gromov-Hausdorff convergence

e (Z,d) a metric space
e X1, CZ

Definition (Hausdorff distance)

dH(Xl,Xz) = inf{r >0: X1 C B(XQ, I’) and X5 C B(Xl, r)}

o (Xi,d1), (X2, d2) metric spaces

e (Z,d) metric space such that (X1,d;) < (Z,d) and
(X2,d2) < (Z,d) isometrically.

Definition (Gromov-Hausdorff distance)

deH (X1, Xo) = if}f du (X1, X2)
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Gromov-Hausdorff convergence

o (X, xk,dk), k € N, pointed metric spaces

Definition (Pointed Gromov-Hausdorff convergence)

(Xk,Xk,dk) (Y y,dy) if Vr Ve 3Fkg Vk > kg
3 Gromov-Hausdorff approximation f: B(xk,r) C Xx — Y with

o f distorts distance by at most ¢
@ f preserves the basepoint

@ f is e-almost surjective onto the r ball
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Gromov-Hausdorff convergence

o (Xk, xk,dk), k € N, pointed metric spaces

Definition (Pointed Gromov-Hausdorff convergence)

(Xk, Xk, dk) (Y y,dy)if Vr Ve 3Zko Vk> ko

3 Gromov-Hausdorff approximation f: B(xx,r) C Xx — Y with
e |d(f(x),f(z)) —d(x,z)| <e
o f(xk)=y
@ B(y,r—c¢) C B(f(B(xk,r)),e€)
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Gromov-Hausdorff convergence

o (Xk, xk,dk), k € N, pointed metric spaces

Definition (Pointed Gromov-Hausdorff convergence)

(Xk, Xk, dk) (Y y,dy)if Vr Ve 3Zko Vk> ko

3 Gromov-Hausdorff approximation f: B(xx,r) C Xx — Y with
e |d(f(x),f(z)) —d(x,z)| <e
o f(xk)=y
e B(y,r—e) C B(f(B(xk, r)),€)

Example: (S(0,r), (r, 0)) (R 0) as r — oo.
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Metric tangents

Definition
(Y,y,dy) is a metric tangent to (X, dx) at x € X if
(X, x, Adx) SR (Y,y,dy) as A — oc.
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Metric tangents

Definition
(Y,y,dy) is a metric tangent to (X, dx) at x € X if
(X, x, Mdx) 5 (Y, y, dy) as A — oc.

Theorem (Mitchell 1985)

The metric tangent of an equiregular sub-Riemannian manifold is a
sub-Riemannian Carnot group.

v

Theorem (Bellaiche 1996)

The metric tangent of any sub-Riemannian manifold is a
sub-Riemannian homogeneous space (=a quotient of a
sub-Riemannian Carnot group).
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Metric tangents to geodesics

e (M, d) a sub-Riemannian manifold
@ p € M a basepoint
e v:(-1,1)— M a geodesic through v(0) = p
o (M, p,)\d) (G e,dg) as A — oo
o fire: B(p,r/\) — G Gromov-Hausdorff approximations
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Metric tangents to geodesics

e (M, d) a sub-Riemannian manifold

@ p € M a basepoint

e v:(-1,1)— M a geodesic through v(0) = p
o (M, p,)\d) (G e,dg) as A — oo

o fire: B(p,r/\) — G Gromov-Hausdorff approximations
=Bxd(p,r)
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Metric tangents to geodesics

e (M, d) a sub-Riemannian manifold
@ p € M a basepoint
e v:(-1,1)— M a geodesic through v(0) = p
o (M, p,)\d) (G e,dg) as A — oo
o fire: B(p,r/\) — G Gromov-Hausdorff approximations

fr.r.e(y) may not approximate a curve o: R — G as A — oo.
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Metric tangents to geodesics

e (M, d) a sub-Riemannian manifold
@ p € M a basepoint
e v:(-1,1)— M a geodesic through v(0) = p
o (M, p,)\d) (G e,dg) as A — oo
o fire: B(p,r/\) — G Gromov-Hausdorff approximations

fr.r.e(y) may not approximate a curve o: R — G as A — oo.

Jo <= ~ differentiable at 0.
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Metric tangents to geodesics

e (M, d) a sub-Riemannian manifold
@ p € M a basepoint
e v:(-1,1)— M a geodesic through v(0) = p
o (M, p,)\d) (G e,dg) as A — oo
o fire: B(p,r/\) — G Gromov-Hausdorff approximations

fr.r.e(y) may not approximate a curve o: R — G as A — oo.
Jo <= ~ differentiable at 0.

Arzela-Ascoli = do up to a subsequence Ay — o0
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Metric tangents to geodesics

e (M, d) a sub-Riemannian manifold
@ p € M a basepoint
e v:(-1,1)— M a geodesic through v(0) = p

o (M, p,)\d) (G e,dg) as A — oo
o fire: B(p,r/\) — G Gromov-Hausdorff approximations

fr.r.e(y) may not approximate a curve o: R — G as A — oo.
Jo <= ~ differentiable at 0.

Arzela-Ascoli = do up to a subsequence Ay — o0

Definition

Tan(y,0) = {0 : (7,7(0), Md) < (0,0(0), d6), Ak — o0}
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Metric tangents to geodesics

Immediate consequences:

v geodesic = every o € Tan(vy,0) is a geodesic

Tan(Tan(v, t),0) C Tan(y, t).
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Metric tangents to geodesics

Immediate consequences:

v geodesic = every o € Tan(vy,0) is a geodesic

Proof: f, .. are e-quasi-isometries.

Tan(Tan(v, t),0) C Tan(y, t).

Proof: a diagonal argument.
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Metric tangents in Carnot groups

e M sub- Riemannian manifold
o (M,p,Ad) % (G, e, dc)

o v:(—-1,1) > M, v(0)=p

e 0:R—G,o(0)=e

Gromov-Hausdorff convergence (7, ~(0), Ad) A (0,0(0),dg)
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Metric tangents in Carnot groups

® M sub- Riemannian manifold
o (M,p,\d) = (G, e, dc)

o v:(—-1,1) > M, v(0)=p

e 0:R—G,o(0)=e

Gromov-Hausdorff convergence (7, ~(0), Ad) A (0,0(0),dg)

@ G sub-Riemannian Carnot group

e (G,e,d) and (G, e, Ad) are isometric by dilation 0y: G — G
— (G,e,\d) 2 (G, e, d)

v» — o uniformly on compact sets, where

M (=AA) = G, a(E) =0 (t/X)).
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Metric tangents to geodesics

og=glaogdaq. .. agll [g gll] = glit]
e G =exp(g) a Carnot group
o ms: G — G/exp(gl?!) the quotient projection down one step

Theorem (H. and Le Donne 2018)

v:(=1,1) = G geodesic and o € Tan(~,0).
Then s 00: R — G/exp(Vs) is also a geodesic.




Metric approach to regularity
0000000e000000

Metric tangents to geodesics

og=glaogdaq. .. agll [g gll] = glit]
e G =exp(g) a Carnot group
o ms: G — G/exp(gl?!) the quotient projection down one step

Theorem (H. and Le Donne 2018)

v:(—1,1) — G geodesic and o € Tan(v,0).
Then s 00: R — G/exp(Vs) is also a geodesic.

~v:(-1,1) — G geodesic and
o € Tan®*(~,0) = Tan(Tan(- - - Tan(+y,0),--- ,0),0).
Then moo: R — Riima js 5 geodesic.

That is, o(t) = exp(tX) for some X € gl
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Large scale behaviour of geodesics

@ G a Carnot group
o r =dimglll
@ m: G — R" the horizontal projection

Theorem (H. and Le Donne 2018)

o :R — G a geodesic.
3 a hyperplane W C R" and 4R > 0 such that
mo~v(R) C B(W,R).
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The cut & correct method

A non-minimality proof strategy (Leonardi and Monti 2008):
© The cut: replace a\[‘%b] with the lift of a geodesic from a
lower step Carnot group

@ The correction: perturb the curve so that

e the endpoint is reverted to the original endpoint, and
e length remains smaller than the original curve's
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The cut & correct method — discretization

@ Choose points gi, ..., gm along the geodesic o
@ Write the endpoint of ¢ as

o(1) = o(0) - g(o)—l g .gl—l g .g’il - gm .g;1 -o(1)
=0(0)-(a(0) - g1) (81 " - 82) - (Eiy - &m) - (8 - (1))

82
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The cut & correct method — discretization

@ Choose points gi, ..., gm along the geodesic o
@ Write the endpoint of ¢ as

c(1)=0(0)-0(0) - g-g g gt gm gnt - o(1)
=0(0)-(a(0) - g1) - (&1 - 82) - (1 - &m) - (&m" - 0(1))
e Easy to insert a perturbation curve a: [0,1] — G:
5(1) = 0(0) - ((0) - 1) - (a(0) - (1)) (gt 2) -
o Perturbed points: g = g1-a(0)™'-a(l) g ' gk

B

. ~

-
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The cut & correct method — the cut

Lifting a geodesic from a lower step group in the discretization:

Vg€ G 3heexp(gh):

A/ exp(gi) (€ Ts(8)) = da(e; hg).
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The cut & correct method — the cut

Lifting a geodesic from a lower step group in the discretization:

Vg€ G 3heexp(gh):

A/ exp(gi) (€ Ts(8)) = da(e; hg).

After replacing o], ;) with a geodesic segment from G/ exp(gl),
either

@ length decreases and the endpoint is translated by
h € exp(gl)), or

@ length does not change, so 75 o U‘[a p| Was already a geodesic
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The cut & correct method — the correction

@ Choose r + 1 points gp, - .., & along the curve 7.

@ For each curve segment gx_1 to gk, insert a at gx_1, and
insert the reverse a;l at g.

81

80 2
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The cut & correct method — the correction

@ Choose r + 1 points gp, - .., & along the curve 7.

@ For each curve segment gx_1 to gk, insert a at gx_1, and
insert the reverse a;l at g.
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The cut & correct method — the correction

@ Choose r + 1 points gp, - .., & along the curve 7.

@ For each curve segment gx_1 to gk, insert a at gx_1, and
insert the reverse a;l at g.




Metric approach to regularity
0000000000008

The cut & correct method — the correction

A back-and-forth perturbation is a group commutator:
aca ! ba"lb = a[a,athlat.

= Perturbation in the layer s — 1 corrects an error in layer s.
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The cut & correct method — the correction

A back-and-forth perturbation is a group commutator:
aca ! ba"lb = a[a,athlat.
= Perturbation in the layer s — 1 corrects an error in layer s.

Need to solve
L(ay,... o) =logh e gl

where L : (gis=1)" — gl is linear.
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The cut & correct method — the correction

A back-and-forth perturbation is a group commutator:
aca ! ba"lb = a[a,athlat.
= Perturbation in the layer s — 1 corrects an error in layer s.

Need to solve
L(ay,... o) =logh e gl

where L : (gis=1)" — gl is linear.

Key ingredients:
@ bracket-generating = L is surjective

@ norm of the right-inverse of L is controlled by the horizontal
projection of go, ..., &r
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Part II: Abnormal dynamics J
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Characterization of abnormal curves

Recall
@ G a Carnot group of rank r
@ Xi,..., X, orthonormal left-invariant frame
e ue[0,1] - R", ~,:[0,1] = G
Yu(t) = Z ui () Xi(7u(t))
74(0) = p
@ 7, abnormal <= u critical point of v+ v,(1)
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Characterization of abnormal curves

o

[0,1] —“— ™

Yu: [0,1] = M abnormal <= X is a characteristic curve of the
symplectic form restricted to A=+
(Hsu 1992)
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Characterization of abnormal curves

T*G ~ G x g* by right-trivialization

G x g*

o

[0,1] —“— G

Yu: [0,1] = M abnormal <= )\ € g* constant with
)‘(Ad%(t) 9[1]) =0

d
Ad: G — GL(g), AdyX = — v-exp(sX) -~ |

ds s=0
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Characterization of abnormal curves

For X € glll, define the abnormal polynomial

Px: G =R, Px(g)=AAdg X)

@ v abnormal <= Px(y(t)) =0 for all X € gl
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Characterization of abnormal curves

For X € glll, define the abnormal polynomial

Px: G =R, Px(g)=AAdg X)

@ v abnormal <= Px(y(t)) =0 for all X € gl

Abnormal dynamics: consider the (singular) foliation tangent to
AN T{Px = 0}.
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A dynamical approach

Rank 2: for P = Px

d

0=—
dt

P(vu(t)) = un(t) X1 P(7u(t)) + u2(t) X2 P(7u(t)).
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A dynamical approach

Rank 2: for P = Px

d

0=—
dt

P(vu(t)) = u1(t) X1 P(7u(t)) + u2(t) X2 P(7u(t))-
When (X1 P, XaP) # 0, up to reparametrization

up(t) = =XaP(yu(t))
up(t) = X1P(7u(t))

= ODE for ~,.
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A dynamical approach

Theorem (Barilari, Chitour, Jean, Prandi, and Sigalotti 2020)

In sub-Riemannian manifolds of rank 2 and step 4, abnormal
minimizers have C' regularity.

Theorem (Boarotto and Vittone 2020)

In Carnot groups of rank 3 step 3, or rank 2 step 4, the abnormal
set is a sub-analytic set of codimension at least one.

Proof strategy:
@ The dynamics is linear.
@ Separate cases by the Jordan form of the linear part.

© Study the dynamics explicitly in the normal forms.
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Abnormal dynamics is complicated

Theorem (H. 2020)

Let x = P(x) be a polynomial ODE system in R".
There exists a Carnot group of rank r such that all trajectories of
the ODE lift to abnormal curves.

For x = (x1,...,x,), a lift is 7, where u; = x;.
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Abnormal dynamics is complicated

Theorem (H. 2020)

Let x = P(x) be a polynomial ODE system in R".
There exists a Carnot group of rank r such that all trajectories of
the ODE lift to abnormal curves.

For x = (x1,...,x,), a lift is 7, where u; = x;.

Proof idea:
@ Every polynomial ODE has a polynomial first integral in a lift.

@ Curves contained in an algebraic variety are abnormal in a lift.
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Construction of a first integral

Theorem (H. 2020)

Let x = P(x) be a polynomial ODE system in R".
There exists a Carnot group of rank r such that all trajectories of
the ODE lift to abnormal curves.

For x = (x1,...,x,), a lift is 7, where u; = x;.

Proof idea:
@ Every polynomial ODE has a polynomial first integral in a lift.

@ Curves contained in an algebraic variety are abnormal in a lift.
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Horizontal gradients

Every polynomial vector field P: R" — R" is the horizontal
gradient of some polynomial in a Carnot group of high enough step.
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Horizontal gradients

Every polynomial vector field P: R" — R" is the horizontal
gradient of some polynomial in a Carnot group of high enough step.

For the frame Xi,..., X, the horizontal gradient of @: G = R is

Vhor @ = Z(XIQ)Xii G— TG.
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Horizontal gradients

Every polynomial vector field P: R" — R" is the horizontal
gradient of some polynomial in a Carnot group of high enough step.

For the frame Xi,..., X, the horizontal gradient of @: G = R is
VhorQ =Y (XiQ)Xi: G — TG.

In coordinates, lift P: R™ — R’ to the horizontal vector field

P:G— TG, P(xi,....x,... ZPXI,.., )Xi(x)
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Gradients in R’

P=(Pi,...,P)=VQ forsome Q: R" = R <= 0;P; = 0;P;
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Gradients in R’

P=(Pi,...,P)=VQ forsome Q: R" = R <= 0;P; = 0;P;

Recursion for Q:
Q= / P1 dxq

= Q1+ /(Pz — 0xQ1) dxo

Q=Q =Q 1+ /(P, —0,Qr1) dx,
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A non-gradient vector field in R”

P(x) = (x1 — x2,x1 + x2) # VQ for any Q: R2 5 R.
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A non-gradient vector field in R”

P(x) = (x1 — x2,x1 + x2) # VQ for any Q: R2 5 R.
Lift to a horizontal vector field in the Heisenberg group.
Xl(X) = 61
Xo(x) = 02 + x103
Xa(x) = [X0, Xl (x) = 05

P:H— TH, P(x)=(x1—x)X1(x)+ (x1 + x2)Xa(x)



Abnormal dynamics
0000000000e0000000000000

A non-gradient vector field in R”

P(x) = (x1 — x2,x1 + x2) # VQ for any Q: R2 5 R.
Lift to a horizontal vector field in the Heisenberg group.
Xl(X) = 61
Xo(x) = 02 + x103
Xa(x) = [X0, Xl (x) = 05

P:H— TH, P(x)=(x1—x)X1(x)+ (x1 + x2)Xa(x)

Then P = Vo Q for the polynomial

1 1
Q(x) = Exf — x1x2 + §x22 + 2x3
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Recursion for horizontal gradient integration

X1Q =x1 — x
XoQ = x1 + x2
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Recursion for horizontal gradient integration

X1Q =x1 — x
XoQ = x1 + x2
Compute commutators:

X3Q = [X1, X2]Q = X1(X2Q) — Xo(X1Q) = 2
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Recursion for horizontal gradient integration

X1Q = x1 — x
XoQ=x1+x
Compute commutators:
X3Q = [X1, Xo]Q = X1 (X2 Q) — Xo(X1Q) =2

Integrate backwards:
Q3 = /X3Q dxs

Q=Q+ /(XzQ — X2Q3) dxo

Q== +/(x1@ — X Q) dy

1 1
= §x12 — X1Xp + §x22 + 2x3
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Recursion for horizontal gradient integration

Why it works:
e As weighted differential operators, [Xi, X>] is a degree 2
operator, [Xi, [X1, X2]] is degree 3, etc.
= partial derivatives of a polynomial eventually vanish
@ There exist coordinates such that X; = 0; + ZJ>, c;jo;.
—> integration variable by variable is possible
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A horizontal first integral

For an ODE
xi=Pi(x), xeR", i=1,...,n

integrate any nonzero orthogonal vector field.
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A horizontal first integral

For an ODE
xi=Pi(x), xeR", i=1,...,n

integrate any nonzero orthogonal vector field.
E.g. if P # 0, integrate

I
o

X1Q=—-P, XoQ=P1 X3Q=X4Q=---=XQ
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A horizontal first integral

For an ODE
xi=Pi(x), xeR", i=1,...,n

integrate any nonzero orthogonal vector field.
E.g. if P # 0, integrate

X1Q=—-P, XoQ=P1 Xz3Q=X4Q=---=X,Q=0.

Then for a trajectory x: [0,1] — G of x = > Pi(x)Xi(x)

%Q(X) = P1(x)X1Q(x) + - -+ + P (x) X, Q(x) = 0.
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Abnormal factors

Theorem (H. 2020)

Let x = P(x) be a polynomial ODE system in R".
There exists a Carnot group of rank r such that all trajectories of
the ODE lift to abnormal curves.

Proof idea:
@ Every polynomial ODE has a polynomial first integral in a lift.

@ Curves contained in an algebraic variety are abnormal in a lift.
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Higher order abnormality

g= g[l] D 9[2] B P g[S], [g[l], g[i]] _ g“*ll.

Definition

v:[0,1] — G abnormal <= A(Ad,glt)) =0
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Higher order abnormality

g= g[l] D 9[2] B P Q[S], [g[l], g[i]] _ g“*ll.

Definition

v:[0,1] — G abnormal <= A(Ad,glt)) =0

Definition

~ abnormal of order k <— )\(Adﬂ/(t)(glll &---dgt))=0
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Higher order abnormality

g= g[l] D 9[2] B P Q[S], [g[l], g[i]] _ g“*ll.

Definition

v:10,1] — G abnormal <~ )\(Adw(t)gm) =0

Definition

~ abnormal of order k <— )\(Adﬂ/(t)(glll ®---@glk))=0

If v(0) = e and A(Ad, () alkl) = 0, then ~ is abnormal of order k.
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Abnormal factors

Proposition
For any polynomial Q: H — R, there exists

@ a Carnot group G with a projection m: G — H
e \eg”
e keN

such that Qo m: G — R is a factor of the polynomial
x = M(Ad, Y) for every Y € glkl.
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Abnormal factors proof

Consider a linear system
')\ — Q N SV = 1
P; N see.,M

in the variables (A, v)
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Abnormal factors proof

Consider a linear system
')\ — Q N SV = 1
P; N see.,M

in the variables (A, v), where
o PA(x) = A\(Ad, Y;) for a basis Yi,..., Yy, of gl

@ 57 are generic polynomials of the form
2 2
SY =g + vix1 + vaxp + v3x3 + vaX{ + vsxixo + VeX5 + ...

such that deg(S/) + deg(Q) = deg(F;).
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Abnormal factors proof

Let
o k=degQ—+1
@ G; a free Carnot group of step s

The linear system

PA=Q-S’, i=1,....m

has a non-trivial solution (\,v) in G for large s.
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Monomial counting

Proof of Lemma:

@ Hall basis argument = 3\ = A(v) such that P1 =Q-5
Consider the remaining system

P —Q.s¥, i=2...m
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Monomial counting

Proof of Lemma:

@ Hall basis argument = 3\ = A(v) such that P1 =Q-5
Consider the remaining system

P —Q.s¥, i=2...m
@ In step s, deg(P,-’\) < s — k. The number of equations is

(m —1) - #{monomials of degree up to s — k}
and the number of variables is

m - #{monomials of degree up to s — k — deg(Q)}
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Monomial counting

Proof of Lemma:

@ Hall basis argument = 3\ = A(v) such that P1 =Q-5
Consider the remaining system

P —Q.s¥, i=2...m
@ In step s, deg(P,-’\) < s — k. The number of equations is

(m —1) - #{monomials of degree up to s — k}
and the number of variables is

m - #{monomials of degree up to s — k — deg(Q)}

© Poincaré series asymptotics for s — oo
= #variables > #equations.
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The entire proof

Theorem (H. 2020)

Let x = P(x) be a polynomial ODE system in R".
There exists a Carnot group of rank r such that all trajectories of
the ODE lift to abnormal curves.

Proof:

@ Every polynomial ODE has a polynomial first integral in a lift.
e Consider an orthogonal vector field.
e Every polynomial vector field is a horizontal gradient.

@ Curves contained in an algebraic variety are abnormal in a lift.

e Common factors of abnormal polynomials = linear system.
e Monomial counting = the system is underdetermined.
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Abnormals from linear ODEs

Abnormals in the free Carnot group of rank 2 and step 7

|/
ZIDN

y=y y=x—3y y =2y
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Abnormals from linear ODEs

Abnormals in the free Carnot group of rank 2 and step 7

X=X X=—tx—y X=X
y=y y=x—3y y =2y
J\: R® — g* semi-algebraic such that trajectories of
x=ax+by+c y=dx+tey+f

are abnormal with covector A(a, b, ¢, d, e, ).
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Abnormals from quadratic ODEs

Abnormals in the free Carnot group of rank 2 and step 13
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Abnormals from quadratic ODEs

Abnormals in the free Carnot group of rank 2 and step 13

z=2z° zeC
Let E C [0, 1] be nowhere dense. 3 abnormal curve that is
injective
parametrized by arc length on [0,1] \ E
not C? at any point x € E
if E is perfect, not C! at any point x € E
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Thank you for your attention! |
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