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Introduction Metric approach to regularity Abnormal dynamics

Sub-Riemannian manifolds

A sub-Riemannian manifold consists of

a smooth manifold M

a bracket-generating distribution ∆ ⊂ TM

a smoothly varying inner product on ∆

Assume (for simplicity):

∆ has a global orthonormal frame X1, . . . ,Xr

the vector fields X1, . . . ,Xr are complete
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The endpoint map

Fix a base point p ∈ M.

Definition (Endpoint map)

The endpoint map is the map

End: L2([0, 1];Rr )→ M, u 7→ γu(1),

where γu : [0, 1]→ M is the curve

γ̇u(t) =
∑

ui (t)Xi (γu(t))

γu(0) = p

Assumptions =⇒ endpoint map well defined and surjective.
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The endpoint map

Abnormal ↔ critical points and values of the endpoint map.

Abnormal control = critical point u ∈ L2 of the endpoint map

Abnormal curve = integral curve γu of an abnormal control u

Abnormal set = the set of critical values of the endpoint map

= the subset of M that can be reached from the
basepoint with an abnormal curve.
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Open problems

Conjecture (Sard)

The abnormal set has zero measure.

Conjecture (Regularity)

All length-minimizing curves are smooth.

The two types of length-minimizing curves.

1 normal: satisfy a geodesic equation =⇒ are smooth

2 abnormal: unknown regularity
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Some regularity results

Strichartz 1986: C∞-regularity for strongly bracket generating
structures

H. and Le Donne 2016: geodesics do not have corner-type
singularities

Monti, Pigati, and Vittone 2018: existence of tangent lines

Belotto da Silva, Figalli, Parusiński, and Rifford 2018:
C 1-regularity for 3-dimensional analytic sub-Riemannian
manifolds

Barilari, Chitour, Jean, Prandi, and Sigalotti 2020:
C 1-regularity for rank 2 step 4 sub-Riemannian structures
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Some Sard results

Assume the sub-Riemannian structure is analytic.
Then the abnormal set is ...

...contained in a closed nowhere dense set (Agrachëv 2009)

...a countable union of semianalytic curves in the case of
3d-manifolds (Belotto da Silva, Figalli, Parusiński, and Rifford
2018)

...a proper algebraic subvariety in Carnot groups of step 2, in
F2,4 (free Carnot group of rank 2 step 4), and in F3,3

(Le Donne, Montgomery, Ottazzi, Pansu, and Vittone 2016)

...a proper sub-analytic subvariety in Carnot groups of rank 3
step 3, and in rank 2 step 4 (Boarotto and Vittone 2020)
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Carnot groups

a Carnot group G : a nilpotent Lie group whose Lie algebra is
stratified

g = g[1] ⊕ g[2] ⊕ · · · ⊕ g[s], [g[1], g[i ]] = g[i+1]

The basepoint p is the identity element e.

∆ is the left-invariant distribution with ∆e = g[1].

The orthonormal frame X1, . . . ,Xr is left-invariant.
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Part I: The metric approach



Introduction Metric approach to regularity Abnormal dynamics

Gromov-Hausdorff convergence

(Z , d) a metric space

X1,X2 ⊂ Z

Definition (Hausdorff distance)

dH(X1,X2) = inf{r > 0 : X1 ⊂ B(X2, r) and X2 ⊂ B(X1, r)}

(X1, d1), (X2, d2) metric spaces

(Z , d) metric space such that (X1, d1) ↪→ (Z , d) and
(X2, d2) ↪→ (Z , d) isometrically.

Definition (Gromov-Hausdorff distance)

dGH(X1,X2) = inf
Z

dH(X1,X2)
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Gromov-Hausdorff convergence

(Xk , xk , dk), k ∈ N, pointed metric spaces

Definition (Pointed Gromov-Hausdorff convergence)

(Xk , xk , dk)
GH−→ (Y , y , dY ) if ∀r ∀ε ∃k0 ∀k > k0

∃ Gromov-Hausdorff approximation f : B(xk , r) ⊂ Xk → Y with

f distorts distance by at most ε

f preserves the basepoint

f is ε-almost surjective onto the r ball

Example: (S1(0, r), (r , 0))
GH−→ (R, 0) as r →∞.
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Metric tangents

Definition

(Y , y , dY ) is a metric tangent to (X , dX ) at x ∈ X if

(X , x , λdX )
GH−→ (Y , y , dY ) as λ→∞.

Theorem (Mitchell 1985)

The metric tangent of an equiregular sub-Riemannian manifold is a
sub-Riemannian Carnot group.

Theorem (Belläıche 1996)

The metric tangent of any sub-Riemannian manifold is a
sub-Riemannian homogeneous space (=a quotient of a
sub-Riemannian Carnot group).
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Metric tangents to geodesics

(M, d) a sub-Riemannian manifold

p ∈ M a basepoint

γ : (−1, 1)→ M a geodesic through γ(0) = p

(M, p, λd)
GH−→ (G , e, dG ) as λ→∞

fλ,r ,ε : B(p, r/λ)→ G Gromov-Hausdorff approximations

fλ,r ,ε(γ) may not approximate a curve σ : R→ G as λ→∞.

∃σ ⇐⇒ γ differentiable at 0.

Arzela-Ascoli =⇒ ∃σ up to a subsequence λk →∞

Definition

Tan(γ, 0) = {σ : (γ, γ(0), λkd)
GH−→ (σ, σ(0), dG ), λk →∞}
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Metric tangents to geodesics

Immediate consequences:

Lemma

γ geodesic =⇒ every σ ∈ Tan(γ, 0) is a geodesic

Proof: fλ,r ,ε are ε-quasi-isometries.

Lemma

Tan(Tan(γ, t), 0) ⊂ Tan(γ, t).

Proof: a diagonal argument.
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Metric tangents in Carnot groups

M sub-Riemannian manifold

(M, p, λd)
GH−→ (G , e, dG )

γ : (−1, 1)→ M, γ(0) = p

σ : R→ G , σ(0) = e

Gromov-Hausdorff convergence (γ, γ(0), λd)
GH−→ (σ, σ(0), dG )

G sub-Riemannian Carnot group

(G , e, d) and (G , e, λd) are isometric by dilation δλ : G → G

=⇒ (G , e, λd)
GH−→ (G , e, d)

γλ → σ uniformly on compact sets, where

γλ : (−λ, λ)→ G , γλ(t) = δλ(γ(t/λ)).
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Metric tangents to geodesics

g = g[1] ⊕ g[2] ⊕ · · · ⊕ g[s], [g[1], g[i ]] = g[i+1]

G = exp(g) a Carnot group

πs : G → G/ exp(g[s]) the quotient projection down one step

Theorem (H. and Le Donne 2018)

γ : (−1, 1)→ G geodesic and σ ∈ Tan(γ, 0).
Then πs ◦ σ : R→ G/ exp(Vs) is also a geodesic.

Corollary

γ : (−1, 1)→ G geodesic and
σ ∈ Tans(γ, 0) = Tan(Tan(· · ·Tan(γ, 0), · · · , 0), 0).

Then π ◦ σ : R→ Rdim g[1] is a geodesic.
That is, σ(t) = exp(tX ) for some X ∈ g[1].
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Large scale behaviour of geodesics

G a Carnot group

r = dim g[1]

π : G → Rr the horizontal projection

Theorem (H. and Le Donne 2018)

σ : R→ G a geodesic.
∃ a hyperplane W ⊂ Rr and ∃R > 0 such that
π ◦ γ(R) ⊂ B(W ,R).

R

π ◦ γ
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The cut & correct method

A non-minimality proof strategy (Leonardi and Monti 2008):

1 The cut: replace σ|[a,b] with the lift of a geodesic from a
lower step Carnot group

2 The correction: perturb the curve so that

the endpoint is reverted to the original endpoint, and
length remains smaller than the original curve’s
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The cut & correct method – discretization

Choose points g1, . . . , gm along the geodesic σ
Write the endpoint of σ as

σ(1) = σ(0) · σ(0)−1 · g1 · g−11 · g2 · · · g−1m−1 · gm · g
−1
m · σ(1)

= σ(0) · (σ(0)−1 · g1) · (g−11 · g2) · · · (g−1m−1 · gm) · (g−1m · σ(1))

Easy to insert a perturbation curve α : [0, 1]→ G :

σ̃(1) = σ(0) · (σ(0)−1 · g1) · (α(0)−1 · α(1)) · (g−11 · g2) · · ·
Perturbed points: g̃k = g1 · α(0)−1 · α(1) · g−11 · gk

g1

g2

g3
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The cut & correct method – the cut

Lifting a geodesic from a lower step group in the discretization:

Lemma

∀g ∈ G ∃h ∈ exp(g[s]) :

dG/ exp(g[s])(e, πs(g)) = dG (e, hg).

After replacing σ|[a,b] with a geodesic segment from G/ exp(g[s]),
either

1 length decreases and the endpoint is translated by
h ∈ exp(g[s]), or

2 length does not change, so πs ◦ σ|[a,b] was already a geodesic
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The cut & correct method – the correction

1 Choose r + 1 points g0, . . . , gr along the curve γ.

2 For each curve segment gk−1 to gk , insert αk at gk−1, and
insert the reverse α−1k at gk .

g0

g1

g2
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The cut & correct method – the correction

A back-and-forth perturbation is a group commutator:

aαa−1 · bα−1b = a[α, a−1b]a−1.

=⇒ Perturbation in the layer s − 1 corrects an error in layer s.

Need to solve
L(α1, . . . , αr ) = log h ∈ g[s],

where L : (g[s−1])r → g[s] is linear.

Key ingredients:

bracket-generating =⇒ L is surjective

norm of the right-inverse of L is controlled by the horizontal
projection of g0, . . . , gr
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Part II: Abnormal dynamics
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Characterization of abnormal curves

Recall

G a Carnot group of rank r

X1, . . . ,Xr orthonormal left-invariant frame

u ∈ [0, 1]→ Rr , γu : [0, 1]→ G

γ̇u(t) =
∑

ui (t)Xi (γu(t))

γu(0) = p

γu abnormal ⇐⇒ u critical point of u 7→ γu(1)



Introduction Metric approach to regularity Abnormal dynamics

Characterization of abnormal curves

T ∗G ' G × g∗ by right-trivialization

T ∗M

[0, 1] M
γu

λ

γu : [0, 1]→ M abnormal ⇐⇒ λ is a characteristic curve of the
symplectic form restricted to ∆⊥

(Hsu 1992)

Ad: G → GL(g), Adγ X =
d

ds
γ · exp(sX ) · γ−1

∣∣
s=0
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Characterization of abnormal curves

T ∗G ' G × g∗ by right-trivialization

G × g∗

[0, 1] G
γu

(γu ,λ)

γu : [0, 1]→ M abnormal ⇐⇒ λ ∈ g∗ constant with
λ(Adγu(t) g

[1]) = 0

Ad: G → GL(g), Adγ X =
d

ds
γ · exp(sX ) · γ−1

∣∣
s=0
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Characterization of abnormal curves

For X ∈ g[1], define the abnormal polynomial

PX : G → R, PX (g) = λ(Adg X )

γ abnormal ⇐⇒ PX (γ(t)) = 0 for all X ∈ g[1].

Abnormal dynamics: consider the (singular) foliation tangent to
∆ ∩ T{PX = 0}.
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A dynamical approach

Rank 2: for P = PX

0 =
d

dt
P(γu(t)) = u1(t)X1P(γu(t)) + u2(t)X2P(γu(t)).

When (X1P,X2P) 6= 0, up to reparametrization

u1(t) = −X2P(γu(t))

u2(t) = X1P(γu(t))

=⇒ ODE for γu.
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A dynamical approach

Theorem (Barilari, Chitour, Jean, Prandi, and Sigalotti 2020)

In sub-Riemannian manifolds of rank 2 and step 4, abnormal
minimizers have C 1 regularity.

Theorem (Boarotto and Vittone 2020)

In Carnot groups of rank 3 step 3, or rank 2 step 4, the abnormal
set is a sub-analytic set of codimension at least one.

Proof strategy:

1 The dynamics is linear.

2 Separate cases by the Jordan form of the linear part.

3 Study the dynamics explicitly in the normal forms.
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Abnormal dynamics is complicated

Theorem (H. 2020)

Let ẋ = P(x) be a polynomial ODE system in Rr .
There exists a Carnot group of rank r such that all trajectories of
the ODE lift to abnormal curves.

For x = (x1, . . . , xr ), a lift is γu where ui = ẋi .

Proof idea:

1 Every polynomial ODE has a polynomial first integral in a lift.

2 Curves contained in an algebraic variety are abnormal in a lift.
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Construction of a first integral

Theorem (H. 2020)

Let ẋ = P(x) be a polynomial ODE system in Rr .
There exists a Carnot group of rank r such that all trajectories of
the ODE lift to abnormal curves.

For x = (x1, . . . , xr ), a lift is γu where ui = ẋi .

Proof idea:

1 Every polynomial ODE has a polynomial first integral in a lift.
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Horizontal gradients

Lemma

Every polynomial vector field P : Rr → Rr is the horizontal
gradient of some polynomial in a Carnot group of high enough step.

For the frame X1, . . . ,Xr the horizontal gradient of Q : G → R is

∇horQ =
∑

(XiQ)Xi : G → TG .

In coordinates, lift P : Rr → Rr to the horizontal vector field

P : G → TG , P(x1, . . . , xr , . . . , xn) =
r∑

i=1

Pi (x1, . . . , xr )Xi (x)
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Gradients in Rr

P = (P1, . . . ,Pr ) = ∇Q for some Q : Rr → R ⇐⇒ ∂iPj = ∂jPi

Recursion for Q:

Q1 =

∫
P1 dx1

Q2 = Q1 +

∫
(P2 − ∂2Q1) dx2

...

Q = Qr = Qr−1 +

∫
(Pr − ∂rQr−1) dxr
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A non-gradient vector field in Rr

P(x) = (x1 − x2, x1 + x2) 6= ∇Q for any Q : R2 → R.

Lift to a horizontal vector field in the Heisenberg group.

X1(x) = ∂1

X2(x) = ∂2 + x1∂3

X3(x) = [X1,X2](x) = ∂3

P : H → TH, P(x) = (x1 − x2)X1(x) + (x1 + x2)X2(x)

Then P = ∇horQ for the polynomial

Q(x) =
1

2
x21 − x1x2 +

1

2
x22 + 2x3
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Recursion for horizontal gradient integration

X1Q = x1 − x2

X2Q = x1 + x2

Compute commutators:

X3Q = [X1,X2]Q = X1(X2Q)− X2(X1Q) = 2

Integrate backwards:

Q3 =

∫
X3Q dx3

Q2 = Q3 +

∫
(X2Q − X2Q3) dx2

Q = Q1 = Q2 +

∫
(X1Q − X1Q2) dx1

=
1

2
x21 − x1x2 +

1

2
x22 + 2x3
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Recursion for horizontal gradient integration

Why it works:

As weighted differential operators, [X1,X2] is a degree 2
operator, [X1, [X1,X2]] is degree 3, etc.
=⇒ partial derivatives of a polynomial eventually vanish

There exist coordinates such that Xi = ∂i +
∑

j>i cij∂j .
=⇒ integration variable by variable is possible
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A horizontal first integral

For an ODE

ẋi = Pi (x), x ∈ Rr , i = 1, . . . , n

integrate any nonzero orthogonal vector field.

E.g. if P1 6= 0, integrate

X1Q = −P2, X2Q = P1 X3Q = X4Q = · · · = XrQ = 0.

Then for a trajectory x : [0, 1]→ G of ẋ =
∑

Pi (x)Xi (x)

d

dt
Q(x) = P1(x)X1Q(x) + · · ·+ Pr (x)XrQ(x) = 0.
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Abnormal factors

Theorem (H. 2020)

Let ẋ = P(x) be a polynomial ODE system in Rr .
There exists a Carnot group of rank r such that all trajectories of
the ODE lift to abnormal curves.

Proof idea:

1 Every polynomial ODE has a polynomial first integral in a lift.

2 Curves contained in an algebraic variety are abnormal in a lift.
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Higher order abnormality

g = g[1] ⊕ g[2] ⊕ · · · ⊕ g[s], [g[1], g[i ]] = g[i+1].

Definition

γ : [0, 1]→ G abnormal ⇐⇒ λ(Adγ(t) g
[1]) = 0

Definition

γ abnormal of order k ⇐⇒ λ(Adγ(t)(g
[1] ⊕ · · · ⊕ g[k])) = 0

Lemma

If γ(0) = e and λ(Adγ(t) g
[k]) = 0, then γ is abnormal of order k.
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Abnormal factors

Proposition

For any polynomial Q : H → R, there exists

a Carnot group G with a projection π : G → H

λ ∈ g∗

k ∈ N
such that Q ◦ π : G → R is a factor of the polynomial
x 7→ λ(Adx Y ) for every Y ∈ g[k].
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Abnormal factors proof

Consider a linear system

Pλi = Q · Sνi , i = 1, . . . ,m

in the variables (λ, ν)

, where

Pλi (x) = λ(Adx Yi ) for a basis Y1, . . . ,Ym of g[k]

Sνi are generic polynomials of the form

Sν = ν0 + ν1x1 + ν2x2 + ν3x3 + ν4x
2
1 + ν5x1x2 + ν6x

2
2 + . . .

such that deg(Sνi ) + deg(Q) = deg(Pi ).
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Abnormal factors proof

Let

k = degQ + 1

Gs a free Carnot group of step s

Lemma

The linear system

Pλi = Q · Sνi , i = 1, . . . ,m

has a non-trivial solution (λ, ν) in Gs for large s.
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Monomial counting

Proof of Lemma:

1 Hall basis argument =⇒ ∃λ = λ(ν) such that P
λ(ν)
1 = Q · Sν1

Consider the remaining system

P
λ(ν)
i = Q · Sνi , i = 2, . . . ,m

2 In step s, deg(Pλi ) ≤ s − k . The number of equations is

(m − 1) ·#{monomials of degree up to s − k}

and the number of variables is

m ·#{monomials of degree up to s − k − deg(Q)}
3 Poincaré series asymptotics for s →∞

=⇒ #variables� #equations.
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The entire proof

Theorem (H. 2020)

Let ẋ = P(x) be a polynomial ODE system in Rr .
There exists a Carnot group of rank r such that all trajectories of
the ODE lift to abnormal curves.

Proof:
1 Every polynomial ODE has a polynomial first integral in a lift.

Consider an orthogonal vector field.
Every polynomial vector field is a horizontal gradient.

2 Curves contained in an algebraic variety are abnormal in a lift.

Common factors of abnormal polynomials = linear system.
Monomial counting =⇒ the system is underdetermined.
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Abnormals from linear ODEs

Abnormals in the free Carnot group of rank 2 and step 7

ẋ = x

ẏ = y

ẋ = −1
4x − y

ẏ = x − 1
4y

ẋ = x

ẏ = 2y

∃λ : R6 → g∗ semi-algebraic such that trajectories of

ẋ = ax + by + c ẏ = dx + ey + f

are abnormal with covector λ(a, b, c , d , e, f ).
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Abnormals from quadratic ODEs

Abnormals in the free Carnot group of rank 2 and step 13

ż = z2, z ∈ C

Let E ⊂ [0, 1] be nowhere dense. ∃ abnormal curve that is

injective

parametrized by arc length on [0, 1] \ E
not C 2 at any point x ∈ E

if E is perfect, not C 1 at any point x ∈ E
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Thank you for your attention!
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