1 июля 2020 г.

Geometric theory of optimal control

Расписание: 

четверг, 16:45

Аудитория: 

Семинар проходит онлайн, в zoom, https://us06web.zoom.us/j/84704253405?pwd=M1dBejE1Rmp5SlUvYThvZzM3UnlvZz09

Докладчик: 

Ryuichi Fukuoka, Hugo Murilo Rodrigues

Название: 

Geodesic fields for Pontryagin type C^0-Finsler manifolds

Аннотация доклада: 

In this talk we introduce the Pontryagin type C^0-Finsler structures on a differentiable manifolds, which are a generalization of Finsler structures. This structure satisfies the minimun requirements of Pontryagin’s maximum principle for the problem of minimizing paths. We define the extended geodesic field E on the slit cotangent bundle T*M\0 of the manifold, which is a generalization of the geodesic spray of Finsler geometry. We study the case where E is a locally Lipschitz vector field. Finally we show some examples where the geodesics on (M,F) are more naturally represented by E than by a similar structure on TM.