7 октября 2020 г.

Geometric theory of optimal control

Расписание: 

четверг, 16:45

Аудитория: 

Семинар проходит онлайн, в zoom, https://us06web.zoom.us/j/84704253405?pwd=M1dBejE1Rmp5SlUvYThvZzM3UnlvZz09

Докладчик: 

Балджы Анна; Сурначев Михаил
Университет Биелефельда, Германия; ИПМ им. М.В. Келлыша РАН,Россия

Название: 

New examples of Lavrentiev gap for generalized Orlicz functions

Аннотация доклада: 

We construct new examples on Lavrentiev phenomenon using fractal contact sets. Comparing to the well-known examples of Zhikov it is not important that at the saddle point the variable exponent crosses the threshold dimension. As a consequence we give the negative answer to the well-known conjecture that the dimension plays a critical role for the Lavrentiev gap to appear. We apply our method to the setting of variable exponents, the double phase potential and weighted p-energy. The talk is based on the joint project with Lars Diening from Bielefeld Unievrsity.