Geometric theory of optimal control
Расписание:
Аудитория:
Докладчик:
Название:
Аннотация доклада:
Классическая формула конечных приращения Лагранжа связывает значения дифференцируемой функции $f$ в двух точках и производной в промежуточной точке. Это по сути одномерный резудьтат даже в случае функции, определенной в $n$-мерном пространстве
$$f(y)-f(x)=\langle f'(z),y-x\rangle,\ z \text{ лежит в отрезке }[x,y]$$
В 1994 Кларк и Ледяев предложили многомерное обобщение этого классического результата для случая полунепрерывных снизу функций, определённых на гильбертовых пространствах. Многомерный характер этого обобщения можно проиллюстрировать следующим простым результатом: пусть Y выпуклое ограниченное замкнутое множество, функция $f$ дифференцируема на "отрезке" $[x,Y]=\mathrm{co}(\{x\} \cup Y)$, тогда существует точка $z$ в $[x,Y]$ такая, что
$$\min\{f(y):y\in Y\}- f(x) \le \min\{\langle f'(z),y-x\rangle : y\in Y\}$$
В этом докладе мы обсуждаем такие "multi-directional mean value inequalities" для общих негладких функций
и банаховых пространств с гладкой нормой (и их обобщений). Они позволяют получать оценки экстремальнх значений функции на множествах в терминах субградиентов этой функции.
Будут показаны разнообразные приложения таких результатов: от теорем о неявных многозначных тображениях до вывода условий оптимальности для обобщённых задач вариационного исчисления.